Ventral screw osteosynthesis is a common surgical method for treating fractures of the odontoid peg, but there is still no consensus about the number and diameter of the screws to be used. The purpose of this study was to develop a more accurate measurement technique for the morphometry of the odontoid peg (dens axis) and to provide a recommendation for ventral screw osteosynthesis. Images of the cervical spine of 44 Caucasian patients, taken with a 64-line CT scanner, were evaluated using the measuring software MIMICS. All measurements were performed by two independent observers. Intraclass correlation coefficients were used to measure inter-rater variability. The mean length of the odontoid peg was 39.76 mm (SD 2.68). The mean screw entry angle α was 59.45° (SD 3.45). The mean angle between the screw and the ventral border of C2 was 13.18° (SD 2.70), the maximum possible mean converging angle of two screws was 20.35° (SD 3.24). The measurements were obtained at the level of 66% of the total odontoid peg length and showed mean values of 8.36 mm (SD 0.84) for the inner diameter in the sagittal plane and 7.35 mm (SD 0.97) in the coronal plane. The mean outer diameter of the odontoid peg was 12.88 mm (SD 0.91) in the sagittal plane and 11.77 mm (SD 1.09) in the coronal plane. The results measured at the level of 90% of the total odontoid peg length were a mean of 6.12 mm (SD 1.14) for the sagittal inner diameter and 5.50 mm (SD 1.05) for the coronal inner diameter. The mean outer diameter of the odontoid peg was 11.10 mm (SD 1.0) in the sagittal plane and 10.00 mm (SD 1.07) in the coronal plane. In order to calculate the necessary screw length using 3.5 mm cannulated screws, 1.5 mm should be added to the measured odontoid peg length when anatomical reduction seems possible. The cross-section of the odontoid peg is not circular but slightly elliptical, with a 10% greater diameter in the sagittal plane. In the majority of cases (70.5%) the odontoid peg offers enough room for two 3.5 mm cannulated cortical screws.
Ultrahochfester Beton (UHPC) bietet ein großes Potenzial hinsichtlich nachhaltiger Lösungen für Instandsetzungen und Verstärkungen von bestehenden Tragwerken, aber auch für ressourcensparende Neubauten. In diesem Zusammenhang ist eine Kombination zwischen Mikrostahlfasern und gewöhnlicher Betonstahlbewehrung sinnvoll, da sich Synergieeffekte bezüglich der Rissbreitenbegrenzung und des Lastabfalls bei Verformungslokalisation erzielen lassen. Zur Bestätigung dieser Einschätzung wurden Biegeversuche mit unterschiedlichen Querschnittsgeometrien und Bewehrungskombinationen durchgeführt. Dank moderner Messmethoden konnte hierbei die Rissbreitenentwicklung über den gesamten Versuchsablauf, auch bei sehr feinen Rissen, kontinuierlich erfasst werden. Die Analyse der Versuchsergebnisse zeigt, dass bei der Ermittlung der Biegetragfähigkeit des Querschnitts die volle Wirkung der Betonstahl‐ (Fließen) und der Faserbewehrung (Nachrisszugfestigkeit) addiert werden dürfen, unabhängig vom Fasergehalt. Auf Basis der gewonnen Messdaten wurde außerdem ein vereinfachter Ansatz zur Berechnung der Rissbreiten im Grenzzustand der Gebrauchstauglichkeit abgeleitet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.