Graphical abstractHighlights► Detailed molecular evolution of metalloenzymes that catalyse the dismutation of hydrogen peroxide. ► Three protein families of differing structure, catalytic mechanism, distribution and evolutionary age. ► Catalatic enzymes in pathogenic organisms are promising targets for drug design. ► Occurrence of biotechnological interesting representatives in extremophiles.
Heme peroxidases and catalases are key enzymes of hydrogen peroxide metabolism and signaling. Here, the reconstruction of the molecular evolution of the peroxidase–catalase superfamily (annotated in pfam as PF00141) based on experimentally verified as well as numerous newly available genomic sequences is presented. The robust phylogenetic tree of this large enzyme superfamily was obtained from 490 full-length protein sequences. Besides already well-known families of heme b peroxidases arranged in three main structural classes, completely new (hybrid type) peroxidase families are described being located at the border of these classes as well as forming (so far missing) links between them. Hybrid-type A peroxidases represent a minor eukaryotic subfamily from Excavates, Stramenopiles and Rhizaria sharing enzymatic and structural features of ascorbate and cytochrome c peroxidases. Hybrid-type B peroxidases are shown to be spread exclusively among various fungi and evolved in parallel with peroxidases in land plants. In some ascomycetous hybrid-type B peroxidases, the peroxidase domain is fused to a carbohydrate binding (WSC) domain. Both here described hybrid-type peroxidase families represent important turning points in the complex evolution of the whole peroxidase–catalase superfamily. We present and discuss their phylogeny, sequence signatures and putative biological function.
All phytopathogenic fungi have two catalase–peroxidase paralogues located either intracellularly (KatG1) or extracellularly (KatG2). Here, for the first time a secreted bifunctional, homodimeric catalase–peroxidase (KatG2 from the rice blast fungus Magnaporthe grisea) has been produced heterologously with almost 100% heme occupancy and comprehensively investigated by using a broad set of methods including UV–Vis, ECD and resonance Raman spectroscopy (RR), thin-layer spectroelectrochemistry, mass spectrometry, steady-state & presteady-state spectroscopy. RR spectroscopy reveals that MagKatG2 shows a unique mixed-spin state, non-planar heme b, and a proximal histidine with pronounced imidazolate character. At pH 7.0 and 25 °C, the standard reduction potential E°′ of the Fe(III)/Fe(II) couple for the high-spin native protein was found to fall in the range typical for the KatG family. Binding of cyanide was relatively slow at pH 7.0 and 25 °C and with a Kd value significantly higher than for the intracellular counterpart. Demonstrated by mass spectrometry MagKatG2 has the typical Trp118-Tyr251-Met277 adduct that is essential for its predominantly catalase activity at the unique acidic pH optimum. In addition, MagKatG2 acts as a versatile peroxidase using both one- and two-electron donors. Based on these data, structure–function relationships of extracellular eukaryotic KatGs are discussed with respect to intracellular KatGs and possible role(s) in host–pathogen interaction.
Chinese hamster ovary (CHO) cells comprise a variety of lineages including CHO-DXB11, CHO-K1, CHO-DG44, and CHO-S. Despite all CHO cell lines sharing a common ancestor, extensive mutagenesis, and clonal selection has resulted in substantial genetic heterogeneity among them. Data from sequencing show that different genes are missing in individual CHO cell lines and each cell line harbors a unique set of mutations with relevance to the bioprocess. However, not much literature is available about the influence of genetic differences of CHO on the performance of bioprocess operations. In this study, the host cell-specific differences among three widely used CHO cell lines (CHO-K1, CHO-S, and CHO-DG44) and recombinantly expressed the same monoclonal antibody (mAb) in an isogenic format by using bacterial artificial chromosomes (BACs) as transfer vector in all cell lines is examined. Cell-specific growth and product formation are studied in batch, fed-batch, and semi-continuous perfusion cultures. Further, two different cell culture media are used to investigate their effects. The authors find CHO cell line-specific preferences for mAb production or biomass synthesis that are determined by the host cell line. Additionally, quality attributes of the expressed mAb are influenced by the host cell line and media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.