In the past few years, continuous-flow reactors with channel dimensions in the micro- or millimeter region have found widespread application in organic synthesis. The characteristic properties of these reactors are their exceptionally fast heat and mass transfer. In microstructured devices of this type, virtually instantaneous mixing can be achieved for all but the fastest reactions. Similarly, the accumulation of heat, formation of hot spots, and dangers of thermal runaways can be prevented. As a result of the small reactor volumes, the overall safety of the process is significantly improved, even when harsh reaction conditions are used. Thus, microreactor technology offers a unique way to perform ultrafast, exothermic reactions, and allows the execution of reactions which proceed via highly unstable or even explosive intermediates. This Review discusses recent literature examples of continuous-flow organic synthesis where hazardous reactions or extreme process windows have been employed, with a focus on applications of relevance to the preparation of pharmaceuticals.
Running oil‐bath chemistry in a microwave! Using reaction vials made out of strongly microwave‐absorbing silicon carbide (SiC) in a microwave reactor simulates experiments conducted in an autoclave with conductive heating because of the efficient shielding of the electromagnetic field by the SiC vial. This technology makes it possible to study the significance of microwave effects.
A continuous process for generation, separation, and reactions of anhydrous diazomethane in a tube-in-tube reactor was developed. The inner tube of the reactor is made of hydrophobic, gas-permeable Teflon AF-2400. The diazomethane is formed in the inner tube and then diffuses through the permeable membrane into the outer chamber and subsequently reacts in the solution carried within. This technique allows safe and scalable reactions with dry diazomethane to be performed on a laboratory scale.
The mechanism of the azide-nitrile cycloaddition mediated by the known dialkylltin oxide-trimethylsilyl azide catalyst system has been addressed through DFT calculations. The catalytic cycle for this tin/silicon complex-based mechanism has been thoroughly examined, disclosing the most plausible intermediates and the energetics involved in the rate enhancement. In addition, a new catalyst, 5-azido-1-methyl-3,4-dihydro-2H-pyrrolium azide, is presented for the formation of tetrazoles by cycloaddition of sodium azide with organic nitriles under neutral conditions. The efficiency of this organocatalyst, generated in situ from N-methyl-2-pyrrolidone (NMP), sodium azide, and trimethylsilyl chloride under reaction conditions, has been examined by preparation of a series of 5-substituted-1H-tetrazoles. The desired target structures were obtained in high yields within 15-25 min employing controlled microwave heating. An in depth computational analysis of the proposed catalytic cycle has also been addressed to understand the nature of the rate acceleration. The computed energy barriers have been compared to the dialkylltin oxide-trimethylsilyl azide metal-based catalyst system. Both the tin/silicon species and the new organocatalyst accelerate the azide-nitrile coupling by activating the nitrile substrate. As compared to the dialkylltin oxide-trimethylsilyl azide method, the organocatalytic system presented herein has the advantage of higher reactivity, in situ generation from inexpensive materials, and low toxicity.
Silicon carbide (SiC) is a strongly microwave absorbing chemically inert ceramic material that can be utilized at extremely high temperatures due to its high melting point and very low thermal expansion coefficient. Microwave irradiation induces a flow of electrons in the semiconducting ceramic that heats the material very efficiently through resistance heating mechanisms. The use of SiC carbide reaction vessels in combination with a single-mode microwave reactor provides an almost complete shielding of the contents inside from the electromagnetic field. Therefore, such experiments do not involve electromagnetic field effects on the chemistry, since the semiconducting ceramic vial effectively prevents microwave irradiation from penetrating the reaction mixture. The involvement of electromagnetic field effects (specific/nonthermal microwave effects) on 21 selected chemical transformations was evaluated by comparing the results obtained in microwave-transparent Pyrex vials with experiments performed in SiC vials at the same reaction temperature. For most of the 21 reactions, the outcome in terms of conversion/purity/product yields using the two different vial types was virtually identical, indicating that the electromagnetic field had no direct influence on the reaction pathway. Due to the high chemical resistance of SiC, reactions involving corrosive reagents can be performed without degradation of the vessel material. Examples include high-temperature fluorine-chlorine exchange reactions using triethylamine trihydrofluoride, and the hydrolysis of nitriles with aqueous potassium hydroxide. The unique combination of high microwave absorptivity, thermal conductivity, and effusivity on the one hand, and excellent temperature, pressure and corrosion resistance on the other hand, makes this material ideal for the fabrication of reaction vessels for use in microwave reactors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.