The final version of the paper can be found in IEEE Geoscience and Remote Sensing Magazine. The sharp and recent increase in the availability of data captured by different sensors combined with their considerably heterogeneous natures poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary datasets, however, opens up the possibility of utilizing multimodal datasets in a joint manner to further improve the performance of the processing approaches with respect to the application at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several spaceborne sensors, the integration of the temporal information with the spatial and/or spectral/backscattering information of the remotely sensed data is possible and helps to move from a representation of 2D/3D data to 4D data structures, where the time variable adds new information as well as challenges for the information extraction algorithms. There are a huge number of research works dedicated to multisource and multitemporal data fusion, but the methods for the fusion of different modalities have expanded in different paths according to each research community. This paper brings together the advances of multisource and multitemporal data fusion approaches with respect to different research communities and provides a thorough and discipline-specific starting point for researchers at different levels (i.e., students, researchers, and The work of P. Ghamisi is supported by the "High Potential Program" of Helmholtz-Zentrum Dresden-Rossendorf.
This paper proposes a novel framework for the fusion of hyperspectral and LiDAR-derived rasterized data using extinction profiles (EPs) and deep learning. In order to extract spatial and elevation information from both the sources, EPs that include different attributes (e.g., height, area, volume, diagonal of the bounding box, and standard deviation) are taken into account. Then, the derived features are fused via either feature stacking or graph-based feature fusion. Finally, the fused features are fed to a deep learning-based classifier (convolutional neural network with logistic regression) to ultimately produce the classification map. The proposed approach is applied to two data sets acquired in Houston, USA and Trento, Italy. Results indicate that the proposed approach can achieve accurate classification results compared to other approaches.
Detailed geoinformation on in-field variations of plant properties (e.g., density, height) is required in precision agriculture and serves as a valuable input for plant growth models and crop management strategies. This letter presents a novel workflow for object-based point cloud analysis for individual maize plant mapping, using radiometric and geometric features of terrestrial laser scanning. The performed radiometric correction achieves a reduction of amplitude variation of homogeneous areas to 1/3 of the original variation and offers a distinct separability of the target class maize plant from soil. The developed procedure, including 3-D point cloud filtering and segmentation, is able to reliably detect single plants with a completeness >80% and correctness >90%. Experiments on reduced point densities show stability of detection rates above 100 points per 0.01 m 2 . The results indicate that the developed workflow will lead to even higher detection accuracy with LiDAR point clouds captured by mobile platforms, with less occlusion effects and more homogeneous point density.
Unmanned aerial vehicles (UAV) are evolving as an alternative tool to acquire land tenure data. UAVs can capture geospatial data at high quality and resolution in a cost-effective, transparent and flexible manner, from which visible land parcel boundaries, i.e., cadastral boundaries are delineable. This delineation is to no extent automated, even though physical objects automatically retrievable through image analysis methods mark a large portion of cadastral boundaries. This study proposes (i) a workflow that automatically extracts candidate cadastral boundaries from UAV orthoimages and (ii) a tool for their semi-automatic processing to delineate final cadastral boundaries. The workflow consists of two state-of-the-art computer vision methods, namely gPb contour detection and SLIC superpixels that are transferred to remote sensing in this study. The tool combines the two methods, allows a semi-automatic final delineation and is implemented as a publicly available QGIS plugin. The approach does not yet aim to provide a comparable alternative to manual cadastral mapping procedures. However, the methodological development of the tool towards this goal is developed in this paper. A study with 13 volunteers investigates the design and implementation of the approach and gathers initial qualitative as well as quantitate results. The study revealed points for improvement, which are prioritized based on the study results and which will be addressed in future work.
In recent years there has been an increasing demand among home owners for cost effective sustainable energy production such as solar energy to provide heating and electricity. A lot of research has focused on the assessment of the incoming solar radiation on roof planes acquired by, e.g., Airborne Laser Scanning (ALS). However, solar panels can also be mounted on building facades in order to increase renewable energy supply. Due to limited reflections of points from vertical walls, ALS data is not suitable to perform solar potential assessment of vertical building facades. This paper focuses on a new method for automatic solar radiation modeling of facades acquired by Mobile Laser Scanning (MLS) and uses the full 3D information of the point cloud for both the extraction of vertical walls covered by the survey and solar potential analysis. Furthermore, a new method isintroduced determining the interior and exterior face, respectively, of each detected wall in order to calculate its slope and aspect angles that are of crucial importance for solar potential assessment. Shadowing effects of nearby objects are considered by computing the 3D horizon of each point of a facade segment within the 3D point cloud
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.