Coronavirus disease 2019 (COVID-19) increases the risk of several non-pulmonary complications such as acute myocardial injury, renal failure or thromboembolic events. A possible unifying explanation for these phenomena may be the presence of profound endothelial dysfunction and injury. This review provides an overview on the association of endothelial dysfunction with COVID-19 and its therapeutic implications. Endothelial dysfunction is a common feature of the key comorbidities that increase risk for severe COVID-19 such as hypertension, obesity, diabetes mellitus, coronary artery disease or heart failure. Preliminary studies indicate that vascular endothelial cells can be infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and evidence of widespread endothelial injury and inflammation is found in advanced cases of COVID-19. Prior evidence has established the crucial role of endothelial cells in maintaining and regulating vascular homeostasis and blood coagulation. Aggravation of endothelial dysfunction in COVID-19 may therefore impair organ perfusion and cause a procoagulatory state resulting in both macro- and microvascular thrombotic events. Angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs) and statins are known to improve endothelial dysfunction. Data from smaller observational studies and other viral infections suggests a possible beneficial effect in COVID-19. Other treatments that are currently under investigation for COVID-19 may also act by improving endothelial dysfunction in patients. Focusing therapies on preventing and improving endothelial dysfunction could improve outcomes in COVID-19. Several clinical trials are currently underway to explore this concept.
We demonstrate that the presence of HF is associated with enhanced tumor growth and that this is independent of hemodynamic impairment and could be caused by cardiac excreted factors. A diagnosis of HF may therefore be considered a risk factor for incident cancer.
Cardiac remodeling and subsequent heart failure remain critical issues after myocardial infarction despite improved treatment and reperfusion strategies. Recently, complete cardiac regeneration has been demonstrated in fish and newborn mice following resection of the cardiac apex. However, it remained entirely unclear whether the mammalian heart can also completely regenerate following a complex cardiac ischemic injury. We established a protocol to induce a severe heart attack in one-day-old mice using left anterior descending artery (LAD) ligation. LAD ligation triggered substantial cardiac injury in the left ventricle defined by Caspase 3 activation and massive cell death. Ischemia-induced cardiomyocyte death was also visible on day 4 after LAD ligation. Remarkably, 7 days after the initial ischemic insult, we observed complete cardiac regeneration without any signs of tissue damage or scarring. This tissue regeneration translated into long-term normal heart functions as assessed by echocardiography. In contrast, LAD ligations in 7-day-old mice resulted in extensive scarring comparable to adult mice, indicating that the regenerative capacity for complete cardiac healing after heart attacks can be traced to the first week after birth. RNAseq analyses of hearts on day 1, day 3, and day 10 and comparing LAD-ligated and sham-operated mice surprisingly revealed a transcriptional programme of major changes in genes mediating mitosis and cell division between days 1, 3 and 10 postnatally and a very limited set of genes, including genes regulating cell cycle and extracellular matrix synthesis, being differentially regulated in the regenerating hearts. We present for the first time a mammalian model of complete cardiac regeneration following a severe ischemic cardiac injury. This novel model system provides the unique opportunity to uncover molecular and cellular pathways that can induce cardiac regeneration after ischemic injury, findings that one day could be translated to human heart attack patients.
Background Pediatric patients with heart failure are treated with medical therapies that were developed for adult patients. These therapies have been shown to be ineffective in pediatric trials, leading to the recognition that new pediatric-specific therapies must be developed. We have previously shown that administration of the recombinant growth factor neuregulin-1 (rNRG1) stimulates heart muscle cell (cardiomyocyte) regeneration in adult mice. We hypothesized that rNRG1 administration may be more effective in the neonatal period, which could provide a new therapeutic paradigm for treating heart failure in pediatric patients. Methods We used a cryoinjury model to induce myocardial dysfunction and scar formation for evaluating the effectiveness of rNRG1-administration in neonatal mice. We evaluated the ability of rNRG1 to stimulate cardiomyocyte proliferation in intact cultured myocardium from pediatric patients. Results After cryoinjury in neonatal mice, early administration of rNRG1 from birth for 34 days improved myocardial function and reduced the prevalence of transmural scars. In contrast, late administration of rNRG1 from 4 to 34 days after cryoinjury transiently improved myocardial function. The mechanisms of early administration involved cardiomyocyte protection (38%) and proliferation (62%). rNRG1 induced cardiomyocyte proliferation in myocardium from infants with heart disease less than 6 months of age. Conclusion Our results identify a more effective time period within which to execute future clinical trials of rNRG1 for stimulating cardiomyocyte regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.