Differential graded categories enhance our understanding of triangulated categories appearing in algebra and geometry. In this survey, we review their foundations and report on recent work by Drinfeld, Dugger-Shipley, . . . , Toën and Toën-Vaquié.
We prove that in a 2-Calabi-Yau triangulated category, each cluster tilting subcategory is Gorenstein with all its finitely generated projectives of injective dimension at most one. We show that the stable category of its Cohen-Macaulay modules is 3-Calabi-Yau. We deduce in particular that cluster-tilted algebras are Gorenstein of dimension at most one, and hereditary if they are of finite global dimension. Our results also apply to the stable (!) endomorphism rings of maximal rigid modules of [Christof Geiß, Bernard Leclerc, Jan Schröer, Rigid modules over preprojective algebras, arXiv: math.RT/0503324, Invent. Math., in press]. In addition, we prove a general result about relative 3-Calabi-Yau duality over non-stable endomorphism rings. This strengthens and generalizes the Ext-group symmetries obtained in [Christof Geiß, Bernard Leclerc, Jan Schröer, Rigid modules over preprojective algebras, arXiv: math.RT/0503324, Invent. Math., in press] for simple modules. Finally, we generalize the results on relative Calabi-Yau duality from 2-Calabi-Yau to d-Calabi-Yau categories. We show how to produce many examples of d-cluster tilted algebras.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.