In this paper we consider a model shape optimization problem. The state variable solves an elliptic equation on a domain with one part of the boundary described as the graph of a control function. We prove higher regularity of the control and develop a priori error analysis for the finite element discretization of the shape optimization problem under consideration. The derived a priori error estimates are illustrated on two numerical examples.
In this paper we consider a model shape optimization problem. The state variable solves an elliptic equation on a star-shaped domain where the radius is given via a control function. First we reformulate the problem on a fixed reference domain, where we put a focus on the regularity which is needed to ensure the existence of an optimal solution. Second, we introduce the Lagrangian and use it to show that the optimal solution possesses a higher regularity, which allows for the explicit computation of the derivative of the reduced cost functional as a boundary integral. We finish the paper with some second order optimality conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.