Fluorescent microscopy demonstrated Cy3-labeled nanoparticles signals in the sensory hair cells and the spiral ganglion neurons of both the treated and contralateral inner ears. Additionally, the distal part of the central auditory pathway (dorsal cochlear nucleus, superior olivary complex) was found to be labeled with the Cy3-linked silica nanoparticles, indicating a retrograde axonal transport. No hearing loss or inflammation was noted in the treated cochlea.
Exact analysis of glottal vibration patterns is indispensable for the assessment of laryngeal pathologies. Increasing demand of voice related examination and large amount of data provided by high-speed laryngoscopy and stroboscopy call for automatic assistance in research and patient care. Automatic glottis segmentation is necessary to assist glottal vibration pattern analysis, but unfortunately proves to be very challenging. Previous glottis segmentation approaches hardly consider characteristic glottis features as well as inhomogeneity of glottal regions and show serious drawbacks in their application for diagnostic purposes. We developed a fully automated glottis segmentation framework that extracts a set of glottal regions in endoscopic videos by using a flexible thresholding technique combined with a refining level set method that incorporates prior glottis shape knowledge. A novel descriptor for glottal regions is presented to remove potential nonglottal fake regions that show glottis-like shape properties. Knowledge of local color distributions is incorporated into Bayesian probability image generation. Glottal regions are then tracked frame-by-frame in probability images with a region-based level set segmentation strategy. Principal component analysis of pixel coordinates is applied to determine glottal orientation in each frame and to remove nonglottal regions if erroneous regions are included. The framework shows very promising results concerning segmentation accuracy and processing times and is applicable for both stroboscopic and high-speed videos.
The pathophysiology of cervical dystonia is not completely understood. Current concepts of the pathophysiology propose that it is a network disorder involving the basal ganglia, cerebellum and sensorimotor cortex. These structures are primarily concerned with sensorimotor control but are also involved in non-motor functioning such as the processing of information related to the chemical senses. This overlap lets us hypothesize a link between cervical dystonia and altered sense of smell and taste. To prove this hypothesis and to contribute to the better understanding of cervical dystonia, we assessed olfactory and gustatory functioning in 40 adults with idiopathic cervical dystonia and 40 healthy controls. The Sniffin Sticks were used to assess odor threshold, discrimination and identification. Furthermore, the Taste Strips were applied to assess the combined taste score. Motor and non-motor deficits of cervical dystonia including neuropsychological and psychiatric alterations were assessed as cofactors for regression analyses. We found that cervical dystonia subjects had lower scores than healthy controls for odor threshold (5.8 ± 2.4 versus 8.0 ± 3.2; p = 0.001), odor identification (11.7 ± 2.3 versus 13.1 ± 1.3; p = 0.001) and the combined taste score (9.5 ± 2.2 versus 11.7 ± 2.7; p < 0.001), while no difference was found in odor discrimination (12.0 ± 2.5 versus 12.9 ± 1.8; p = 0.097). Regression analysis suggests that age is the main predictor for olfactory decline in subjects with cervical dystonia. Moreover, performance in the Montreal Cognitive Assessment is a predictor for gustatory decline in cervical dystonia subjects. Findings propose that cervical dystonia is associated with diminished olfactory and gustatory functioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.