Most fast inhibitory neurotransmission in the brain is mediated by GABAA receptors, which are mainly postsynaptic and consist of diverse alpha and beta subunits together with the gamma 2 subunit. Although the gamma 2 subunit is not necessary for receptor assembly and translocation to the cell surface, we show here that it is required for clustering of major postsynaptic GABAA receptor subtypes. Loss of GABAA receptor clusters in mice deficient in the gamma 2 subunit, and in cultured cortical neurons from these mice, is paralleled by loss of the synaptic clustering molecule gephyrin and synaptic GABAergic function. Conversely, inhibiting gephyrin expression causes loss of GABAA receptor clusters. The gamma 2 subunit and gephyrin are thus interdependent components of the same synaptic complex that is critical for postsynaptic clustering of abundant subtypes of GABAA receptors in vivo.
Increasing evidence points to an association between major depressive disorders (MDDs) and diverse types of GABAergic deficits. Here we summarize clinical and preclinical evidence supporting a central and causal role of GABAergic deficits in the etiology of depressive disorders. Studies of depressed patients indicate that MDDs are accompanied by reduced brain concentration of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) as well as alterations in the subunit composition of the principal receptors (GABAA receptors) mediating GABAergic inhibition. In addition, there is abundant evidence that GABA plays a prominent role in the brain control of stress, the most important vulnerability factor in mood disorders. Furthermore, preclinical evidence suggests that currently used antidepressant drugs designed to alter monoaminergic transmission as well as non-pharmacologic therapies may ultimately act to counteract GABAergic deficits. In particular, GABAergic transmission plays an important role in the control of hippocampal neurogenesis and neural maturation, which are now established as cellular substrates of most if not all antidepressant therapies. Lastly, comparatively modest deficits in GABAergic transmission in GABAA-receptor-deficient mice are sufficient to cause behavioral, cognitive, neuroanatomical, and neuroendocrine phenotypes as well as antidepressant drug response characteristics expected of an animal model of MDD. The GABAergic hypothesis of MDD suggests that alterations in GABAergic transmission represent fundamentally important aspects of the etiological sequelae of major depressive disorders that are reversed by monoaminergic antidepressant drug action.
Adult neurogenesis arises from neural stem cells within specialized niches1–3. Neuronal activity and experience, presumably acting upon this local niche, regulate multiple stages of adult neurogenesis, from neural progenitor proliferation to new neuron maturation, synaptic integration and survival1, 3. Whether local neuronal circuitry has a direct impact on adult neural stem cells is unknown. Here we show that in the adult hippocampus nestin-expressing radial glia-like quiescent neural stem cells4–9 (RGLs) respond tonically to the neurotransmitter GABA via γ2 subunit-containing GABAA Rs. Clonal analysis9 of individual RGLs revealed a rapid exit from quiescence and enhanced symmetric self-renewal after conditional γ2 deletion. RGLs are in close proximity to GAD67+ terminals of parvalbumin-expressing (PV+) interneurons and respond tonically to GABA released from these neurons. Functionally, optogenetic control of dentate PV+, but not somatostatin- or vasoactive intestinal polypeptide (VIP)-expressing, interneuron activity can dictate the RGL choice between quiescence and activation. Furthermore, PV+ interneuron activation restores RGL quiescence following social isolation, an experience that induces RGL activation and symmetric division8. Our study identifies a niche cell-signal-receptor trio and a local circuitry mechanism that control the activation and self-renewal mode of quiescent adult neural stem cells in response to neuronal activity and experience.
Glycine receptors (GlyRs) and specific subtypes of GABA(A) receptors are clustered at synapses by the multidomain protein gephyrin, which in turn is translocated to the cell membrane by the GDP-GTP exchange factor collybistin. We report the characterization of several new variants of collybistin, which are created by alternative splicing of exons encoding an N-terminal src homology 3 (SH3) domain and three alternate C termini (CB1, CB2, and CB3). The presence of the SH3 domain negatively regulates the ability of collybistin to translocate gephyrin to submembrane microaggregates in transfected mammalian cells. Because the majority of native collybistin isoforms appear to harbor the SH3 domain, this suggests that collybistin activity may be regulated by protein-protein interactions at the SH3 domain. We localized the binding sites for collybistin and the GlyR beta subunit to the C-terminal MoeA homology domain of gephyrin and show that multimerization of this domain is required for collybistin-gephyrin and GlyR-gephyrin interactions. We also demonstrate that gephyrin clustering in recombinant systems and cultured neurons requires both collybistin-gephyrin interactions and an intact collybistin pleckstrin homology domain. The vital importance of collybistin for inhibitory synaptogenesis is underlined by the discovery of a mutation (G55A) in exon 2 of the human collybistin gene (ARHGEF9) in a patient with clinical symptoms of both hyperekplexia and epilepsy. The clinical manifestation of this collybistin missense mutation may result, at least in part, from mislocalization of gephyrin and a major GABA(A) receptor subtype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.