Coordination complex systems containing phosphine ligands are used in artificial photosynthesis utilizing their unique stereoelectronic properties. Mono-, di- and tetraphosphines act as optimized ligand systems for complexation.
As a consequence of the accelerated climate change, solutions to capture, store and potentially activate carbon dioxide received increased interest in recent years. Herein, it is demonstrated, that the neural network potential ANI-2x is able to describe nanoporous organic materials at approx. density functional theory accuracy and force field cost, using the example of the recently published two- and three-dimensional covalent organic frameworks HEX-COF1 and 3D-HNU5 and their interaction with CO2 guest molecules. Along with the investigation of the diffusion behaviour, a wide range of properties of interest is analyzed, such as the structure, pore size distribution and host-guest distribution functions. The workflow developed herein facilitates the estimation of the maximum CO2 adsorption capacity and is easily generalizable to other systems. Additionally, this work illustrates, that minimum distance distribution functions can be a highly useful tool in understanding the nature of interactions in host-gas systems at the atomic level.
Wavelength‐independent conversion of organic photoswitches in the photostationary state is a rare phenomenon that opens up a way for many practical applications. In this work, three fused bis(hemi‐indigo) derivatives with different substitution patterns were synthesized and their photoswitching was investigated by optical spectroscopy, real‐time NMR spectroscopy and TD‐DFT calculations. We disclosed that the Z‐E photoisomerization of the meta‐bis(hemi‐indigo) derivative was remarkably independent of the irradiation wavelength from UV up to yellow light. The wavelength‐independent forward photoswitching together with the inhibited backward photoisomerization, high thermal stability of the photoinduced isomers as well as significant overlap between the photoswitch absorption and the solar spectrum allows to suggest bis(hemi‐indigo) derivatives as promising candidates for molecular solar thermal energy storage (MOST) systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.