We describe and evaluate the algorithmic techniques that are used in the FF
planning system. Like the HSP system, FF relies on forward state space search,
using a heuristic that estimates goal distances by ignoring delete lists.
Unlike HSP's heuristic, our method does not assume facts to be independent. We
introduce a novel search strategy that combines hill-climbing with systematic
search, and we show how other powerful heuristic information can be extracted
and used to prune the search space. FF was the most successful automatic
planner at the recent AIPS-2000 planning competition. We review the results of
the competition, give data for other benchmark domains, and investigate the
reasons for the runtime performance of FF compared to HSP
We have previously reported a number of tractable planning problems defined in the SAS+ formalism. This article complements these results by providing a complete map over the complexity of SAS+ planning under all combinations of the previously considered restrictions. We analyze the complexity of both finding a minimal plan and finding any plan. In contrast to other complexity surveys of planning, we study not only the complexity of the decision problems but also the complexity of the generation problems. We prove that the SAS+-PUS problem is the maximal tractable problem under the restrictions we have considered if we want to generate minimal plans. If we are satisfied with any plan, then we can generalize further to the SAS+-US problem, which we prove to be the maximal tractable problem in this case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.