Large-eddy simulations (LES) with the newThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. R. Heinze et al.at building confidence in the model's ability to simulate small-to mesoscale variability in turbulence, clouds and precipitation. The results are encouraging: the high-resolution model matches the observed variability much better at small-to mesoscales than the coarser resolved reference model. In its highest grid resolution, the simulated turbulence profiles are realistic and column water vapour matches the observed temporal variability at short time-scales. Despite being somewhat too large and too frequent, small cumulus clouds are well represented in comparison with satellite data, as is the shape of the cloud size spectrum. Variability of cloud water matches the satellite observations much better in ICON than in the reference model. In this sense, it is concluded that the model is fit for the purpose of using its output for parametrization development, despite the potential to improve further some important aspects of processes that are also parametrized in the high-resolution model.
Abstract. Cloud properties from both ground-based as well as from geostationary passive satellite observations have been used previously for diagnosing aerosol–cloud interactions. In this investigation, a 2-year data set together with four selected case studies are analyzed with the aim of evaluating the consistency and limitations of current ground-based and satellite-retrieved cloud property data sets. The typically applied adiabatic cloud profile is modified using a sub-adiabatic factor to account for entrainment within the cloud. Based on the adiabatic factor obtained from the combination of ground-based cloud radar, ceilometer and microwave radiometer, we demonstrate that neither the assumption of a completely adiabatic cloud nor the assumption of a constant sub-adiabatic factor is fulfilled (mean adiabatic factor 0.63 ± 0.22). As cloud adiabaticity is required to estimate the cloud droplet number concentration but is not available from passive satellite observations, an independent method to estimate the adiabatic factor, and thus the influence of mixing, would be highly desirable for global-scale analyses. Considering the radiative effect of a cloud described by the sub-adiabatic model, we focus on cloud optical depth and its sensitivities. Ground-based estimates are here compared vs. cloud optical depth retrieved from the Meteosat SEVIRI satellite instrument resulting in a bias of −4 and a root mean square difference of 16. While a synergistic approach based on the combination of ceilometer, cloud radar and microwave radiometer enables an estimate of the cloud droplet concentration, it is highly sensitive to radar calibration and to assumptions about the moments of the droplet size distribution. Similarly, satellite-based estimates of cloud droplet concentration are uncertain. We conclude that neither the ground-based nor satellite-based cloud retrievals applied here allow a robust estimate of cloud droplet concentration, which complicates its use for the study of aerosol–cloud interactions.
Air temperature data from five enclosed limestone sinkholes of various sizes and shapes on the Hetzkogel Plateau near Lunz, Austria (1300 m MSL), have been analyzed to determine the effect of sinkhole geometry on temperature minima, diurnal temperature ranges, temperature inversion strengths, and vertical temperature gradients. Data were analyzed for a non-snow-covered October night and for a snow-covered December night when the temperature fell as low as Ϫ28.5ЊC. A surprising finding is that temperatures were similar in two sinkholes with very different drainage areas and depths. A three-layer model was used to show that the skyview factor is the most important topographic parameter controlling cooling for basins in this size range in nearcalm, clear-sky conditions and that the cooling slows when net longwave radiation at the floor of the sinkhole is nearly balanced by the ground heat flux.
Microlidar observations have been performed at the Djougou‐Nangatchori site in northern Benin during the African Monsoon Multidisciplinary Analysis (AMMA) Special Observation Period 0 in the dry season, combined with the Dust and Biomass‐Burning Experiment (DABEX) from mid‐January to mid‐February 2006. During the dry season, the Djougou area is a region where biomass burning aerosols are heavily produced from agriculture fires. The aerosol vertical distribution is also controlled by dynamics, and the penetration of the winter monsoon flux to the north and northern winds bringing mineral dust to the South leads to a frontal discontinuity location close to Djougou latitude. During the early dry season, the aerosol vertical distribution was observed to be structured in two layers, the lower being the boundary layer reaching altitudes up to 2 km and the upper one corresponding to the trade wind layer extending up to 5 km. Lidar data are used to retrieve the time evolution and vertical profile of extinction and discuss transport processes during the period analyzed. As the monsoon flux during the dry season is steadily progressing to the north but also moving back and forth according to shorter timescale forcings, biomass burning particles are transported from the boundary layer into the upper troposphere. This transport has a strong impact on the distribution of aerosol particles on the vertical, and extinction values larger than 0.3 km−1 have been retrieved at altitudes close to 3 km. A particular event of biomass burning air mass outbreak associated with a synoptic forcing is studied, where satellite observations are used to discuss observations of biomass burning particles over Djougou and at the regional scale.
Meteorological events affecting the evolution of temperature inversions or cold-air pools in the 1-km-diameter, high-altitude (~1300 m MSL) Grünloch basin in the eastern Alps are investigated using data from lines of temperature dataloggers running up the basin sidewalls, nearby weather stations, and weather charts. Nighttime cold-air-pool events observed from October 2001 to June 2002 are categorized into undisturbed inversion evolution, late buildups, early breakups, mixing events, layered erosion at the inversion top, temperature disturbances occurring in the lower or upper elevations of the pool, and inversion buildup caused by the temporary clearing of clouds. In addition, persistent multiday cold-air pools are sometimes seen. Analyses show that strong winds and cloud cover are the governing meteorological parameters that cause the inversion behavior to deviate from its undisturbed state, but wind direction can also play an important role in the life cycle of the cold-air pools, because it governs the interaction with steep or gentle slopes of the underlying topography. Undisturbed cold-air pools are unusual in the Grünloch basin. A schematic diagram illustrates the different types of cold-air-pool events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.