Metasurfaces have appeared as a versatile platform for miniaturized functional nonlinear optics due to their design freedom in tailoring wavefronts. The key factor that limits its application in functional devices is the low conversion efficiency. Recently, dielectric metasurfaces governed by either high‐quality factor modes (quasi‐bound states in the continuum) or Mie modes, enabling strong light–matter interaction, have become a prolific route to achieve high nonlinear efficiency. Here, an effective way of spatial nonlinear phase control by using the Pancharatnam–Berry phase principle with a high third harmonic conversion efficiency of 10 −4 W −2 is demonstrated both numerically and experimentally. It is found that the magnetic Mie resonance appears to be the main contributor to the third harmonic response, while the contribution from the quasi‐bound states in the continuum is negligible. This is confirmed by a phenomenological model based on coupled anharmonic oscillators. Besides, the metasurface provides experimentally a high diffraction efficiency (80%–90%) in both polarization channels. A functional application of this approach is shown by experimentally reconstructing an encoded polarization‐multiplexed vortex beam array with different topological charges at the third harmonic frequency with high fidelity. The approach has the potential viability for future on‐chip nonlinear signal processing and wavefront control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.