Purpose
Particularly in volatile, uncertain, complex and ambiguous (VUCA) business conditions, staff in supply chain management (SCM) look to real-time (RT) data processing to reduce uncertainties. However, based on the premise that data processing can be perfectly mastered, such expectations do not reflect reality. The purpose of this paper is to investigate whether RT data processing reduces SCM uncertainties under real-world conditions.
Design/methodology/approach
Aiming to facilitate communication on the research question, a Delphi expert survey was conducted to identify challenges of RT data processing in SCM operations and to assess whether it does influence the reduction of SCM uncertainty. In total, 14 prospective statements concerning RT data processing in SCM operations were developed and evaluated by 68 SCM and data-science experts.
Findings
RT data processing was found to have an ambivalent influence on the reduction of SCM complexity and associated uncertainty. Analysis of the data collected from the study participants revealed a new type of uncertainty related to SCM data itself.
Originality/value
This paper discusses the challenges of gathering relevant, timely and accurate data sets in VUCA environments and creates awareness of the relationship between data-related uncertainty and SCM uncertainty. Thus, it provides valuable insights for practitioners and the basis for further research on this subject.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.