Novel fluorescent ligands were synthesized to identify a high-affinity probe that would enable visualization of the dopamine transporter (DAT) in living cells. Fluorescent tags were extended from the N- or 2-position of 2beta-carbomethoxy-3beta-(3,4-dichlorophenyl)tropane, using an ethylamino linker. The resulting 2-substituted (5) and N-substituted (9) rhodamine-labeled ligands provided the highest DAT binding affinities expressed in COS-7 cells (Ki= 27 and 18 nM, respectively) in the series. Visualization of the DAT with 5 and 9 was demonstrated by confocal fluorescence laser scanning microscopy in stably transfected HEK293 cells.
The efficient synthesis of pure d-glycerate-2-phosphate is of great interest due to its importance as an enzyme substrate and metabolite. Therefore, we investigated a straightforward one-step biocatalytic phosphorylation of glyceric acid. Glycerate-2-kinase from Thermotoga maritima was expressed in Escherichia coli, allowing easy purification. The selective glycerate-2-kinase-catalyzed phosphorylation was followed by P NMR and showed excellent enantioselectivity towards phosphorylation of the d-enantiomer of glyceric acid. This straightforward phosphorylation reaction and subsequent product isolation enabled the preparation of enantiomerically pure d-glycerate 2-phosphate. This phosphorylation reaction, using recombinant glycerate-2-kinase, yielded d-glycerate 2-phosphate in fewer reaction steps and with higher purity than chemical routes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.