The development of all-solid-state electrochemical energy storage systems, such as lithiumion batteries with solid electrolytes, requires stable, electronically insulating compounds with exceptionally high ionic conductivities. Considering oxides, garnet-type Li7La3Zr2O12 and derivatives, see Zr-exchanged Li6La3ZrTaO12 (LLZTO), have attracted great attention because of its high Li + ionic conductivity of up to 1 mS · cm −1 . Despite numerous studies focusing on conductivities of powder samples, only a few use time-domain NMR methods to probe Li ion diffusion parameters in single crystals. Here we report, for the first time, on temperature-variable 7 Li NMR relaxometry measurements using both laboratory and spin-lock techniques to probe Li jump rates in monocrystalline Li-bearing garnets. Timedomain NMR offers the possibility to study Li ion dynamics on both the short-range and long-range length scale. The techniques applied yield a fully consistent picture of correlated Li ion jump diffusion in LLZTO; the data perfectly mirror a modified BPP-type relaxation response being based on a Lorentzian-shaped relaxation function. The rates measured could be parameterized with a single set of diffusion parameters. Dynamic information about the elementary jump processes, such as jump rates and activation energies, were extracted from complete diffusion-induced rate peaks that are obtained when the relaxation rate is plotted vs inverse temperature. Results from NMR are completely in line with ion transport parameters derived from conductivity spectroscopy. Acknowledgement. We thank our colleagues at the University of Hannover and the TU Graz for valuable discussions. Financial support by the Deutsche Forschungsgemeinschaft
A novel electrolyte concept for lithium-ion batteries, termed "ionic liquid-in-salt", is introduced. Our feasibility study on (1 - x)EMIMTFSI:(x)LiTFSI, 0.66 ≤ x ≤ 0.97, showed that at elevated temperatures the various dual liquid and solid phase regions are characterized by a wide thermal stability window, high ionic conductivities and appreciable mechanical integrity. The highest conductivity values are obtained for the compositions x = 0.70 and x = 0.75 (σ ≈ 6 × 10(-3) S cm(-1)) and are related to the final melting of the materials. Overall, high conductivities are observed for 0.70 < x < 0.90 while low ones are found for x > 0.90. Raman and NMR spectroscopies reveal the presence of highly mobile Li-containing species, partly identified as [Li(TFSI)2](-), albeit rather unexpected for these high x values, which might explain the high ionic conductivities observed. To prove the general value of our concept in more detail, some first results on BMIMTFSI and PY13TFSI based systems are also presented.
Li oxide garnets are among the most promising candidates for solid-state electrolytes in novel Li ion and Li metal based battery concepts. Cubic Li7La3Zr2O12 stabilized by a partial substitution of Zr4+ by Bi5+ has not been the focus of research yet, despite the fact that Bi5+ would be a cost-effective alternative to other stabilizing cations such as Nb5+ and Ta5+. In this study, Li7–xLa3Zr2–xBixO12 (x = 0.10, 0.20, ..., 1.00) was prepared by a low-temperature solid-state synthesis route. The samples have been characterized by a rich portfolio of techniques, including scanning electron microscopy, X-ray powder diffraction, neutron powder diffraction, Raman spectroscopy, and 7Li NMR spectroscopy. Pure-phase cubic garnet samples were obtained for x ≥ 0.20. The introduction of Bi5+ leads to an increase in the unit-cell parameters. Samples are sensitive to air, which causes the formation of LiOH and Li2CO3 and the protonation of the garnet phase, leading to a further increase in the unit-cell parameters. The incorporation of Bi5+ on the octahedral 16a site was confirmed by Raman spectroscopy. 7Li NMR spectroscopy shows that fast Li ion dynamics are only observed for samples with high Bi5+ contents.
Layer-structured materials, such as graphite (LiCy) or Lix(Co,Ni,Mn)O2, are important electrode materials in current battery research that still relies on insertion materials. This is due to their excellent ability to reversibly accommodate small alkali ions such as Li(+) and Na(+). Despite of these applications, microscopic information on Li ion self-diffusion in transition metal sulfides are relatively rare. Here, we used (7)Li nuclear magnetic resonance (NMR) spectroscopy to study translational Li ion diffusion in hexagonal (2H) LixNbS2 (x = 0.3, 0.7, and 1) by means of variable-temperature NMR relaxometry. (7)Li spin-lattice relaxation rates and (7)Li NMR spectra were used to determine Li jump rates and activation barriers as a function of Li content. Hereby, NMR spin-lattice relaxation rates recorded with the spin-lock technique offered the possibility to study Li ion dynamics on both the short-range and long-range length scale. Information was extracted from complete diffusion-induced rate peaks that are obtained when the relaxation rate is plotted vs inverse temperature. The peak maximum of the three samples studied shifts toward higher temperatures with increasing Li content x in 2H-LixNbS2. Information on the dimensionality of the diffusion process was experimentally obtained by frequency dependent Rρ measurements carried out at T = 444 K, that is in the high-temperature regime of the rate peaks. A slight, but measurable frequency-dependence within this limit is found for all samples; it is in good agreement with predictions from relaxation models developed to approximate low-dimensional (2D) jump diffusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.