Rotational effects are known to influence severely the aerodynamic performance of the inboard region of rotor blades. The underlying physical mechanisms are however far from being well understood. The present work addresses this problem using Reynolds averaged Navier-Stokes computations and experimental results of the MEXICO (Model Experiments in Controlled Conditions) rotor. Four axisymmetric inflow cases with wind speeds ranging from pre-stall to post-stall conditions are computed and compared with pressure and particle image velocimetry (PIV) experimental data, obtaining, in general, consistent results. At low angles of attack, the aerodynamic behavior of all of the studied blade sections resembles the one from the corresponding 2D airfoils. However, at high angles of attack, rotational effects lead to stall delay and/or lift enhancement at inboard positions. Such effects are shown to occur only in the presence of significant radial flows. Interestingly, the way in which rotational effects influence the aerodynamics of the MEXICO blades differs qualitatively in certain aspects from the descriptions found in the literature about this topic. The presented results provide new insights that are useful for the development of advanced and physically-sound correction models.
During their operation, wind turbine blades are eroded due to rain and hail, or they are contaminated with insects. Since the relative inflow velocity is higher at the outer than at the inner part of the blades, erosion occurs mostly at the outer blade region. In order to prevent strong erosion, it is possible to install a leading edge protection, which can be applied to the blades after the initial installation, but changes the shape of the initial airfoil sections. It is unclear how this modification influences the aerodynamic performance of the turbine. Hence, it is investigated in this work. The NREL 5 MW turbine is simulated with clean and eroded blades, which are compared to coated blades equipped with leading edge protection. Aerodynamic polars are generated by means of Computational Fluid Dynamics, and load calculations are conducted using the blade element momentum theory. The analysis in this work shows that, compared to clean rotor blades, the worse aerodynamic behaviour of strongly eroded blades can lead to power losses of 9%. In contrast, coated blades only have a small impact on the turbine power of less than 1%.
This review article aims to provide an overview and insight into the most relevant aspects of wind energy development and current state-of-the-art. The industry is in a very mature stage, so it seems to be the right time to take stock of the relevant areas of wind energy use for power generation. For this review, the authors considered the essential aspects of the development of wind energy technology: research, modeling, and prediction of wind speed as an energy source, the technology development of the plants divided into the mechanical and electrical systems and the plant control, and finally the optimal plant operation including the maintenance strategies. The focus is on the development in Europe, with a partial focus on Germany. The authors are employees of the Fraunhofer Institutes, Institute for Energy Economics and Energy Systems Technology and Institute for Wind Energy Systems, who have contributed to the development of this technology for decades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.