Proper gene expression relies on a class of ubiquitously expressed, uridine-rich small nuclear RNAs (snRNAs) transcribed by RNA polymerase II (RNAPII). Vertebrate snRNAs are transcribed from a unique promoter, which is required for proper 3-end formation, and cleavage of the nascent transcript involves the activity of a poorly understood set of proteins called the Integrator complex. To examine 3-end formation in Drosophila melanogaster, we developed a cell-based reporter that monitors aberrant 3-end formation of snRNA through the gain in expression of green fluorescent protein (GFP). We used this reporter in Drosophila S2 cells to determine requirements for U7 snRNA 3-end formation and found that processing was strongly dependent upon nucleotides located within the 3 stem-loop as well as sequences likely to comprise the Drosophila equivalent of the vertebrate 3 box. Substitution of the actin promoter for the snRNA promoter abolished proper 3-end formation, demonstrating the conserved requirement for an snRNA promoter in Drosophila. We tested the requirement for all Drosophila Integrator subunits and found that Integrators 1, 4, 9, and 11 were essential for 3-end formation and that Integrators 3 and 10 may be dispensable for processing. Depletion of cleavage and polyadenylation factors or of histone pre-mRNA processing factors did not affect U7 snRNA processing efficiency, demonstrating that the Integrator complex does not share components with the mRNA 3-end processing machinery. Finally, flies harboring mutations in either Integrator 4 or 7 fail to complete development and accumulate significant levels of misprocessed snRNA in the larval stages.In eukaryotes, the major transcripts produced by RNA polymerase II (RNAPII) include the polyadenylated [poly (A) ϩ ] mRNAs, the replication-dependent histone mRNAs, and the Sm class of small nuclear RNAs (snRNAs). The 3Ј ends of these three general classes of RNAs are all formed by cotranscriptional cleavage, but each one has a distinct mechanism for 3Ј-end formation (for reviews, see references 29 and 32). In poly(A) ϩ and histone pre-mRNAs there are conserved upstream and downstream sequences that flank the cleavage site; factors bind to these sites and then recruit additional factors that initiate cleavage (53). In the case of poly(A) ϩ pre-mRNA, the upstream element is the canonical AAUAAA polyadenylation signal (PAS) and the downstream sequence is the G/Urich downstream element (DSE). Recognition of the PAS is carried out by the cleavage and polyadenylation specificity complex (CPSF) component CPSF160 via its RNA recognition motifs (RRM) (36), whereas the DSE is bound by the RRM of the cleavage stimulation factor (CstF) component CstF64 (28). Subsequent to this recognition event is recruitment of additional factors that activate the endonucleolytic cleavage between the PAS and the DSE.Histone pre-mRNA contains a distinct set of flanking elements. Upstream of the cleavage site is a conserved stem-loop structure (SL) and downstream a purine-rich element called the ...
This review describes the present state of a project to identify and characterize novel nervous system proteins by using monoclonal antibodies (mAbs) against the Drosophila brain. Some 1,000 hybridoma clones were generated by injection of homogenized Drosophila brains or heads into mice and fusion of their spleen cells with myeloma cells. Testing the mAbs secreted by these clones identified a library of about 200 mAbs, which selectively stain specific structures of the Drosophila brain. Using the approach "from antibody to gene", several genes coding for novel proteins of the presynaptic terminal were cloned and characterized. These include the "cysteine string protein" gene (Csp, mAb ab49), the "synapse-associated protein of 47 kDa" gene (Sap47, mAbs nc46 and nb200), and the "Bruchpilot" gene (brp, mAb nc82). By a "candidate" approach, mAb nb33 was shown to recognize the pigment dispersing factor precursor protein. mAbs 3C11 and pok13 were raised against bacterially expressed Drosophila synapsin and calbindin-32, respectively, after the corresponding cDNAs had been isolated from an expression library by using antisera against mammalian proteins. Recently, it was shown that mAb aa2 binds the Drosophila homolog of "epidermal growth factor receptor pathway substrate clone 15" (Eps15). Identification of the targets of mAbs na21, ab52, and nb181 is presently attempted. Here, we review the available information on the function of these proteins and present staining patterns in the Drosophila brain for classes of mAbs that either bind differentially in the eye, in neuropil, in the cell-body layer, or in small subsets of neurons. The prospects of identifying the corresponding antigens by various approaches, including protein purification and mass spectrometry, are discussed.
Formation of the 39 end of RNA polymerase II-transcribed snRNAs requires a poorly understood group of proteins called the Integrator complex. Here we used a fluorescence-based read-through reporter that expresses GFP in response to snRNA misprocessing and performed a genome-wide RNAi screen in Drosophila S2 cells to identify novel factors required for snRNA 39-end formation. In addition to the known Integrator complex members, we identified Asunder and CG4785 as additional Integrator subunits. Functional and biochemical experiments revealed that Asunder and CG4785 are additional core members of the Integrator complex. We also identified a conserved requirement in both fly and human snRNA 39-end processing for cyclin C and Cdk8 that is distinct from their function in the Mediator Cdk8 module. Moreover, we observed biochemical association between Integrator proteins and cyclin C/Cdk8, and that overexpression of a kinase-dead Cdk8 causes snRNA misprocessing. These data functionally define the Drosophila Integrator complex and demonstrate an additional function for cyclin C/Cdk8 unrelated to its function in Mediator.
Background: Small nuclear RNA (snRNA) 3Ј end processing is carried out by the poorly understood integrator complex. Results: An essential microdomain within IntS12 binds IntS1 and is required for integrator complex activity. Conclusion: A small binding interface between the largest and smallest integrator subunits is critical for snRNA processing. Significance: These data uncover the unexpected findings that the IntS12 PHD finger is nearly dispensable for snRNA processing, whereas a microdomain is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.