We demonstrate that a 50 nm high solution-filled cavity bounded by two parallel electrodes in which electrochemically active molecules undergo rapid redox cycling can be used to determine very fast electron-transfer kinetics. We illustrate this capability by showing that the heterogeneous rate constant of Fc(MeOH)(2) sensitively depends on the type and concentration of the supporting electrolyte. These solid-state devices are mechanically robust and stable over time and therefore have the potential to become a widespread and versatile tool for electrochemical measurements.
We report the electrochemical detection of individual redox-active molecules as they freely diffuse in solution. Our approach is based on microfabricated nanofluidic devices, wherein repeated reduction and oxidation at two closely spaced electrodes yields a giant sensitivity gain. Single molecules entering and leaving the cavity are revealed as anticorrelated steps in the faradaic current measured simultaneously through the two electrodes. Cross-correlation analysis provides unequivocal evidence of single molecule sensitivity. We further find agreement with numerical simulations of the stochastic signals and analytical results for the distribution of residence times. This new detection capability can serve as a powerful alternative when fluorescent labeling is invasive or impossible. It further enables new fundamental (bio)electrochemical experiments, for example, localized detection of neurotransmitter release, studies of enzymes with redox-active products, and single-cell electrochemical assays. Finally, our lithography-based approach renders the devices suitable for integration in highly parallelized, all-electrical analysis systems.
We have developed a chip-based nanofluidic device to amplify the electrochemical signal of catechols by orders of magnitude. The amplification is based on rapid redox cycling between plane parallel electrodes inside a nanochannel. We show that it is possible to monitor the signal of only a few hundred molecules residing in the active area of the nanofluidic sensor. Furthermore, due to the nanochannel design, the sensor is immune to interference by molecules undergoing irreversible redox reactions. We demonstrate the selectivity of the device by detecting catechol in the presence of ascorbic acid, whose oxidized form is only stable for a short time. The interference of ascorbic acid is usually a challenge in the detection of catecholamines in biological samples.
This work is focused on the fabrication and analysis of graphene-based, solution-gated field effect transistor arrays (GFETs) on a large scale for bioelectronic measurements. The GFETs fabricated on different substrates, with a variety of gate geometries (width/length) of the graphene channel, reveal a linear relation between the transconductance and the width/length ratio. The area normalised electrolyte-gated transconductance is in the range of 1–2 mS·V−1·□ and does not strongly depend on the substrate. Influence of the ionic strength on the transistor performance is also investigated. Double contacts are found to decrease the effective resistance and the transfer length, but do not improve the transconductance. An electrochemical annealing/cleaning effect is investigated and proposed to originate from the out-of-plane gate leakage current. The devices are used as a proof-of-concept for bioelectronic sensors, recording external potentials from both: ex vivo heart tissue and in vitro cardiomyocyte-like HL-1 cells. The recordings show distinguishable action potentials with a signal to noise ratio over 14 from ex vivo tissue and over 6 from the cardiac-like cell line in vitro. Furthermore, in vitro neuronal signals are recorded by the graphene transistors with distinguishable bursting for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.