A new combined doping control screening method for the analysis of anabolic steroids in human urine using liquid chromatography/electrospray ionization orthogonal acceleration time-of-flight mass spectrometry (LCoaTOFMS) and gas chromatography/electron ionization orthogonal acceleration time-of-flight mass spectrometry (GCoaTOFMS) has been developed in order to acquire accurate full scan MS data to be used to detect designer steroids. The developed method allowed the detection of representative prohibited substances, in addition to steroids, at concentrations of 10 ng/mL for anabolic agents and metabolites, 30 ng/mL for corticosteroids, 500 ng/mL for stimulants and beta-blockers, 250 ng/mL for diuretics, and 200 ng/mL for narcotics. Sample preparation was based on liquid-liquid extraction of hydrolyzed human urine, and the final extract was analyzed as trimethylsilylated derivatives in GCoaTOFMS and underivatized in LCoaTOFMS in positive ion mode. The sensitivity, mass accuracy, advantages and limitations of the developed method are presented.
Ecdysterone is a phytosteroid widely discussed for its various pharmacological, growth-promoting, and anabolic effects, mediated by the activation of estrogen receptor beta (ERbeta). Performance-enhancement in sports was demonstrated recently, and ecdysterone was consequently included in the Monitoring Program, to detect potential patterns of misuse in sport. Only few studies on the pharmacokinetics of ecdysterone in humans have been reported so far. In this study, post-administration urine samples in twelve volunteers (single dose of 50 mg of ecdysterone) were analyzed using dilute-and-inject liquid-chromatography–tandem mass spectrometry. Identification and quantitation of ecdysterone and of two metabolites, 14-deoxy-ecdysterone and 14-deoxy-poststerone, was achieved. Ecdysterone was the most abundant analyte present in post-administration urine samples, detected for more than 2 days, with a maximum concentration (Cmax) in the 2.8–8.5 h urine (Cmax = 4.4–30.0 µg/mL). The metabolites 14-deoxy-ecdysterone and 14-deoxy-poststerone were detected later, reaching the maximum concentrations at 8.5–39.5 h (Cmax = 0.1–6.0 µg/mL) and 23.3–41.3 h (Cmax = 0.1–1.5 µg/mL), respectively. Sex-specific differences were not observed. Cumulative urinary excretion yielded average values of 18%, 2.3%, and 1.5% for ecdysterone, 14-deoxy-ecdysterone, and 14-deoxy-poststerone, respectively. Ecdysterone and 14-deoxy-ecdysterone were excreted following first-order kinetics with half-lives calculated with three hours, while pharmacokinetics of 14-deoxy-poststerone needs further evaluation.
The phytosteroid ecdysterone was recently reported to enhance performance in sports and may thus be considered as a substance of relevance in anti-doping control. To trace back an administration of ecdysterone from urine samples analytical properties have been investigated to assess its integration into initial testing procedures (ITP) in doping control laboratories. MethodsAnalytical properties of ecdysterone were evaluated using GC-QTOF-MS and LC-QTOF-MS.Its metabolism and elimination in human were studied using urines collected after administration. ResultsThe detectability of ecdysterone by GC-MS (after derivatization) and/or LC-MS(/MS) has been demonstrated and sample preparation methods were evaluated. Dilute-and-inject for LC-MS(/MS) or SPE using Oasis HLB for GC-MS or LC-MS were found most suitable, while liquidliquid extraction was hampered by the high polarity of ecdysteroids.Most abundantly, ecdysterone was detected in the post administration urines as parent compound besides the metabolite desoxy-ecdysterone. Additionally desoxy-poststerone was tentatively assigned as minor metabolite, however further investigations are needed. ConclusionAn administration of ecdysterone can be targeted using existing procedures of anti-doping laboratories. Ecdysterone and desoxy-ecdysterone appeared as suitable candidates for integration in ITP. Using dilute-and-inject a detection of the parent compound was possible for more than two days after the administration of a single dose of ~50 mg.
HPLC is considered the method of choice for the separation of various classes of drugs. However, some analytes are still challenging as HPLC shows limited resolution capabilities for highly polar analytes as they interact insufficiently on conventional reversed-phase (RP) columns. Especially in combination with mass spectrometric detection, limitations apply for alterations of stationary phases. Some highly polar sympathomimetic drugs and their metabolites showed almost no retention on different RP columns. Their retention remains poor even on phenylhexyl phases that show different selectivity due to π-π interactions. Supercritical fluid chromatography (SFC) as an orthogonal separation technique to HPLC may help to overcome these issues. Selected polar drugs and metabolites were analyzed utilizing SFC separation. All compounds showed sharp peaks and good retention even for the very polar analytes, such as sulfoconjugates. Retention times and elution orders in SFC are different to both RP and HILIC separations as a result of the orthogonality. Short cycle times could be realized. As temperature and pressure strongly influence the polarity of supercritical fluids, precise regulation of temperature and backpressure is required for the stability of the retention times. As CO2 is the main constituent of the mobile phase in SFC, solvent consumption and solvent waste are considerably reduced. Graphical Abstract SFC-MS/MS vs. LC-MS/MS.
PurposeThe phytosteroid ecdysterone was recently reported to enhance performance in sports and may thus be considered as a substance of relevance in anti-doping control. To trace back an administration of ecdysterone from urine samples analytical properties have been investigated to assess its integration into initial testing procedures (ITP) in doping control laboratories. MethodsAnalytical properties of ecdysterone were evaluated using GC-QTOF-MS and LC-QTOF-MS.Its metabolism and elimination in human were studied using urines collected after administration. ResultsThe detectability of ecdysterone by GC-MS (after derivatization) and/or LC-MS(/MS) has been demonstrated and sample preparation methods were evaluated. Dilute-and-inject for LC-MS(/MS) or SPE using Oasis HLB for GC-MS or LC-MS were found most suitable, while liquidliquid extraction was hampered by the high polarity of ecdysteroids.Most abundantly, ecdysterone was detected in the post administration urines as parent compound besides the metabolite desoxy-ecdysterone. Additionally desoxy-poststerone was tentatively assigned as minor metabolite, however further investigations are needed. ConclusionAn administration of ecdysterone can be targeted using existing procedures of anti-doping laboratories. Ecdysterone and desoxy-ecdysterone appeared as suitable candidates for integration in ITP. Using dilute-and-inject a detection of the parent compound was possible for more than two days after the administration of a single dose of ~50 mg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.