Purpose The paper posits that a solution for businesses to use privacy-friendly data repositories for its customers’ data is to change from the traditional centralized repository to a trusted, decentralized data repository. Blockchain is a technology that provides such a data repository. However, the European Union’s General Data Protection Regulation (GDPR) assumed a centralized data repository, and it is commonly argued that blockchain technology is not usable. This paper aims to posit a framework for adopting a blockchain that follows the GDPR. Design/methodology/approach The paper uses the Levy and Ellis’ narrative review of literature methodology, which is based on constructivist theory posited by Lincoln and Guba. Using five information systems and computer science databases, the researchers searched for studies using the keywords GDPR and blockchain, using a forward and backward search technique. The search identified a corpus of 416 candidate studies, from which the researchers applied pre-established criteria to select 39 studies. The researchers mined this corpus for concepts, which they clustered into themes. Using the accepted computer science practice of privacy by design, the researchers combined the clustered themes into the paper’s posited framework. Findings The paper posits a framework that provides architectural tactics for designing a blockchain that follows GDPR to enhance privacy. The framework explicitly addresses the challenges of GDPR compliance using the unimagined decentralized storage of personal data. The framework addresses the blockchain–GDPR tension by establishing trust between a business and its customers vis-à-vis storing customers’ data. The trust is established through blockchain’s capability of providing the customer with private keys and control over their data, e.g. processing and access. Research limitations/implications The paper provides a framework that demonstrates that blockchain technology can be designed for use in GDPR compliant solutions. In using the framework, a blockchain-based solution provides the ability to audit and monitor privacy measures, demonstrates a legal justification for processing activities, incorporates a data privacy policy, provides a map for data processing and ensures security and privacy awareness among all actors. The research is limited to a focus on blockchain–GDPR compliance; however, future research is needed to investigate the use of the framework in specific domains. Practical implications The paper posits a framework that identifies the strategies and tactics necessary for GDPR compliance. Practitioners need to compliment the framework with rigorous privacy risk management, i.e. conducting a privacy risk analysis, identifying strategies and tactics to address such risks and preparing a privacy impact assessment that enhances accountability and transparency of a blockchain. Originality/value With the increasingly strategic use of data by businesses and the contravening growth of data privacy regulation, alternative technologies could provide businesses with a means to nurture trust with its customers regarding collected data. However, it is commonly assumed that the decentralized approach of blockchain technology cannot be applied to this business need. This paper posits a framework that enables a blockchain to be designed that follows the GDPR; thereby, providing an alternative for businesses to collect customers’ data while ensuring the customers’ trust.
PurposeThe purpose of this paper is to develop an efficient and effective preventive maintenance (PM) plan that considers machines’ maintenance needs in addition to their reliability factor.Design/methodology/approachSimilarity coefficient method in group technology (GT) philosophy is used. Machines’ reliability factor is considered to develop virtual machine cells based on their need for maintenance according to the type of failures they encounter.FindingsUsing similarity coefficient method in GT philosophy for PM planning results in grouping machines based on their common failures and maintenance needs. Using machines' reliability factor makes the plan more efficient since machines will be maintained at the same time intervals and when their maintenance is due. This helps to schedule a standard and efficient maintenance process where maintenance material, tools and labor are scheduled accordingly.Practical implicationsThe proposed procedure will assist maintenance managers in developing an efficient and effective PM plans. These maintenance plans provide better inventory management for the maintenance materials and tools needed using the developed virtual machine cells.Originality/valueThis paper presents a new procedure to implement PM using the similarity coefficient method in GT. A new similarity coefficient equation that considers machines reliability is developed. Also a clustering algorithm that calculates the similarity between machine groups and form virtual machine cells is developed. A numerical example adopted from the literature is solved to demonstrate the proposed heuristic method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.