Internet-of-Things (IoT) is an emergent paradigm that is increasingly applied in smart cities. A popular technology used in IoT is LoRa that supports long-range wireless communication.In this research, we study LoRa-based IoT systems with batterypowered end nodes that collect and communicate data to a gateway for further processing. Existing approaches in such IoT systems usually only consider stationary end nodes. We focus on systems with mobile end nodes, paving the way to new applications such as target tracking. Key Quality of Service (QoS) requirements for these settings are the reliability of the communication and energy consumption. With mobile end nodes, ensuring these QoS is challenging as the system is subject to continuous changes. In this paper, we investigate how the settings of a mobile end node impact key performance indicators for reliability and energy consumption. Based on insights obtained from extensive field experiments, we devise an algorithm that automatically adapts the settings of a mobile end node to ensure its QoS requirements for a setup with a single gateway. We then extend the algorithm to a setup with multiple gateways. We demonstrate how the algorithms achieve the QoS requirements of a mobile end node in a concrete IoT deployment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.