Serine/arginine-rich (SR) proteins are important players in RNA metabolism and are extensively phosphorylated at serine residues in RS repeats. Here, we show that phosphorylation switches the RS domain of the serine/arginine-rich splicing factor 1 from a fully disordered state to a partially rigidified arch-like structure. Nuclear magnetic resonance spectroscopy in combination with molecular dynamics simulations revealed that the conformational switch is restricted to RS repeats, critically depends on the phosphate charge state and strongly decreases the conformational entropy of RS domains. The dynamic switch also occurs in the 100 kDa SR-related protein hPrp28, for which phosphorylation at the RS repeat is required for spliceosome assembly. Thus, a phosphorylation-induced dynamic switch is common to the class of serine/arginine-rich proteins and provides a molecular basis for the functional redundancy of serine/arginine-rich proteins and the profound influence of RS domain phosphorylation on protein-protein and protein-RNA interactions.
Assembly of SNAREs (soluble N-ethylmaleimidesensitive factor attachment protein receptors) mediates membrane fusions in all eukaryotic cells. The synaptic SNARE complex is represented by a twisted bundle of four a-helices. Leucine zipper-like layers extend through the length of the complex except for an asymmetric and ionic middle layer formed by three glutamines (Q) and one arginine (R). We have examined the functional consequences of Q±R exchanges in the conserved middle layer using the exocytotic SNAREs of yeast as a model. Exchanging Q for R in Sso2p drastically reduces cell growth and protein secretion. When a 3Q/1R ratio is restored by a mirror R®Q substitution in the R-SNARE Snc2p, wild-type functionality is observed. Secretion is near normal when all four helices contain Q, but defects become apparent when additional mutations are present in other layers. Using molecular dynamics free energy perturbation simulations, these ®ndings are rationalized in structural and energetic terms. We conclude that the asymmetric arrangement of the polar amino acids in the central layer is essential for normal function of SNAREs in membrane fusion.
A likely conformation of Rho EF involves some extension of helices E and F, with the tip of the loop lying over helix C and projecting towards the C terminus. This is consistent with mutagenesis data showing the TTQ transducin-binding motif close to loop CD, and cysteine cross-linking data indicating the C-terminal part of Rho EF to be close to the CD loop.
Economic variables like GDP growth, employment, interest rates and consumption show signs of cyclical behavior. Many variables display multiple cycles, with lengths ranging in between 5 to even up to 100 years. We argue that multiple cycles can be associated with long-run stability of the economic system, provided that the cycle lengths are such that interference is rare or absent. For a large sample of important variables, including key variables for the US, UK and the Netherlands, we document that this is indeed the case.
The three-dimensional structure of GlpF, the glycerol facilitator of Escherichia coli, was determined by cryo-electron microscopy. The 6.9-Å density map calculated from images of two-dimensional crystals shows the GlpF helices to be similar to those of AQP1, the erythrocyte water channel. While the helix arrangement of GlpF does not reflect the larger pore diameter as seen in the projection map, additional peripheral densities observed in GlpF are compatible with the 31 additional residues in loops C and E, which accordingly do not interfere with the inner channel construction. Therefore, the atomic structure of AQP1 was used as a basis for homology modeling of the GlpF channel, which is predicted to be free of bends, wider, and more vertically oriented than the AQP1 channel. Furthermore, the residues facing the GlpF channel exhibit an amphiphilic nature, being hydrophobic on one side and hydrophilic on the other side. This property may partially explain the contradiction of glycerol diffusion but limited water permeation capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.