One of the major limitations in the speed of the atomic force microscope (AFM) is the bandwidth of the mechanical scanning stage, especially in the vertical (z) direction. According to the design principles of "light and stiff" and "static determinacy," the bandwidth of the mechanical scanner is limited by the first eigenfrequency of the AFM head in case of tip scanning and by the sample stage in terms of sample scanning. Due to stringent requirements of the system, simply pushing the first eigenfrequency to an ever higher value has reached its limitation. We have developed a miniaturized, high speed AFM scanner in which the dynamics of the z-scanning stage are made insensitive to its surrounding dynamics via suspension of it on specific dynamically determined points. This resulted in a mechanical bandwidth as high as that of the z-actuator (50 kHz) while remaining insensitive to the dynamics of its base and surroundings. The scanner allows a practical z scan range of 2.1 μm. We have demonstrated the applicability of the scanner to the high speed scanning of nanostructures.
Atomic force microscopy (AFM) is an essential nanoinstrument technique for several applications such as cell biology and nanoelectronics metrology and inspection. The need for statistically significant sample sizes means that data collection can be an extremely lengthy process in AFM. The use of a single AFM instrument is known for its very low speed and not being suitable for scanning large areas, resulting in a very-low-throughput measurement. We address this challenge by parallelizing AFM instruments. The parallelization is achieved by miniaturizing the AFM instrument and operating many of them simultaneously. This instrument has the advantages that each miniaturized AFM can be operated independently and that the advances in the field of AFM, both in terms of speed and imaging modalities, can be implemented more easily. Moreover, a parallel AFM instrument also allows one to measure several physical parameters simultaneously; while one instrument measures nano-scale topography, another instrument can measure mechanical, electrical, or thermal properties, making it a lab-on-an-instrument. In this paper, a proof of principle of such a parallel AFM instrument has been demonstrated by analyzing the topography of large samples such as semiconductor wafers. This nanoinstrument provides new research opportunities in the nanometrology of wafers and nanolithography masks by enabling real die-to-die and wafer-level measurements and in cell biology by measuring the nano-scale properties of a large number of cells.
With the device dimensions moving towards the 1X node and below, the semiconductor industry is rapidly approaching the point where existing metrology, inspection and review tools face huge challenges in terms of resolution, the ability to resolve 3D and the throughput. Due to the advantages of sub-nanometer resolution and the ability of true 3D scanning, scanning probe microscope (SPM) and specifically atomic force microscope (AFM) are considered as alternative technologies for CD-metrology, defect inspection and review of 1X node and below. In order to meet the increasing demand for resolution and throughput of CD-metrology, defect inspection and review, TNO has previously introduced the parallel SPM concept, consisting of parallel operation of many miniaturized SPMs on a 300 and 450 mm wafer. In this paper we will present the proof of principle of the parallelization for metrology and inspection. To give an indication of the system's specifications, the throughput of scanning is 4500 sites per hour, each within an area of 1 µm 2 and 1024 ×1024 pixels.
Abstract. High-power resonant diplexers for millimetre waves have various promising applications in ECRH systems. The round-trip resonator length of a diplexer needs to be accurately tuned to match its prescribed functionality. For this purpose one of the mirrors in the FADIS MkIIa diplexer has been mounted on a motion system, in order to control the mirror to its desired location despite the presence of substantial disturbances. The mechanical properties and control strategy for the mirror motion system have been designed such as to meet the overall system requirements. The performance of the motion system has been experimentally validated in various high power mm-wave tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.