Tertiary contact formation rates in alpha-synuclein, an intrinsically disordered polypeptide implicated in Parkinson's disease, have been determined from measurements of diffusion-limited electron-transfer kinetics between triplet-excited tryptophan:3-nitrotyrosine pairs separated by 10, 12, 55, and 90 residues. Calculations based on a Markovian lattice model developed to describe intrachain diffusion dynamics for a disordered polypeptide give contact quenching rates for various loop sizes ranging from 6 to 48 that are in reasonable agreement with experimentally determined values for small loops (10-20 residues). Contrary to expectations, measured contact rates in alpha-synuclein do not continue to decrease as the loop size increases (>/=35 residues), and substantial deviations from calculated rates are found for the pairs W4-Y94, Y39-W94, and W4-Y136. The contact rates for these large loops indicate much shorter average donor-acceptor separations than expected for a random polymer.
We describe a general synthetic strategy for developing high affinity peptide binders against specific epitopes of challenging protein biomarkers. The epitope of interest is synthesized as a polypeptide, with a detection biotin tag and a strategically placed azide (or alkyne) presenting amino acid. This synthetic epitope (SynEp) is incubated with a library of complementary alkyne or azide presenting peptides. Library elements that bind the SynEp in the correct orientation undergo the Huisgen cycloaddition, and are covalently linked to the SynEp. Hit peptides are tested against the full-length protein to identify a best binder. We describe epitope-targeted linear or macrocycle peptide ligands against 12 different diagnostic or therapeutic analytes. The general epitope targeting capability for these low molecular weight synthetic ligands enables a range of therapeutic and diagnostic applications, similar to those of monoclonal antibodies.
Metallic nanowires composed of nickel and gold as well as bimetallic nickel-gold nanowires were fabricated via templated electrodeposition in nanoporous alumina membranes. Gold surfaces were functionalized with alkanethiols with terminal hexa(ethylene glycol) groups (EG6), while nickel surfaces were functionalized with palmitic acid, a 16-carbon fatty acid. When exposed to a fluorescently tagged protein, hydrophobic nickel wires exhibited bright fluorescence while EG 6-terminated gold wires did not, indicating that the protein did not adhere to the EG6-functionalized nanowires. Nickel-gold nanowires presenting distinct segments of alkyl and EG6 surfaces were also exposed to the fluorescent protein. Intense fluorescence was only observed on the nickel segment of these wires, demonstrating that proteins selectively adsorbed to one portion of these multicomponent nanostructures.
We report on a robust and sensitive approach for detecting protective antigen (PA) exotoxin from Bacillus anthracis in complex media. A peptide-based capture agent against PA was developed by improving a bacteria display-developed peptide into a highly selective biligand through in situ click screening against a large, chemically synthesized peptide library. This biligand was coupled with an electrochemical enzyme-linked immunosorbent assay utilizing nanostructured gold electrodes. The resultant assay yielded a limit of detection of PA of 170 pg/mL (2.1 pM) in buffer, with minimal sensitivity reduction in 1% serum. The powdered capture agent could be stably stored for several days at 65 °C, and the full electrochemical biosensor showed no loss of performance after extended storage at 40 °C. The engineered stability and specificity of this assay should be extendable to other cases in which biomolecular detection in demanding environments is required.
Advances in the fields of proteomics, molecular imaging, and therapeutics are closely linked to the availability of affinity reagents that selectively recognize their biological targets. Here we present a review of Iterative Peptide In Situ Click Chemistry (IPISC), a novel screening technology for designing peptide multiligands with high affinity and specificity. This technology builds upon in situ click chemistry, a kinetic target-guided synthesis approach where the protein target catalyzes the conjugation of two small molecules, typically through the azide–alkyne Huisgen cycloaddition. Integrating this methodology with solid phase peptide libraries enables the assembly of linear and branched peptide multiligands we refer to as Protein Catalyzed Capture Agents (PCC Agents). The resulting structures can be thought of as analogous to the antigen recognition site of antibodies and serve as antibody replacements in biochemical and cell-based applications. In this review, we discuss the recent progress in ligand design through IPISC and related approaches, focusing on the improvements in affinity and specificity as multiligands are assembled by target-catalyzed peptide conjugation. We compare the IPISC process to small molecule in situ click chemistry with particular emphasis on the advantages and technical challenges of constructing antibody-like PCC Agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.