Diffusion weighted imaging sequences are now widely available on Magnetic Resonance Imaging (MRI) scanners. Diffusion Tensor Imaging (DTI) of the brain is able to show white matter tracts and is now commonly used in human medicine to study brain anatomy, tumors, structural pathways,. . . The purpose of this study was to show the interest of DTI to reveal the white matter fibers in the dogs' brain. DTI MR Images for this study were obtained with a 3 T system of 4 dogs euthanized for other reasons than neurological disorders. Combined fractional anisotropic (FA) and directional maps were obtained in the first 2 hours after death. The heads were amputated immediately after scanning and stored in 10% formalin until preparation for dissection. An experienced anatomist tracked white matter tracts with clinical relevance using the scanner software. The selected tracts were volume rendered and correlated with gross dissection. Using DTI we were able to track relevant neurological connections, such as the corticospinal tract, the optic and the cerebellar tract. The three dimensional anatomy is better presented using modern visualization techniques. DTI seems to be a valuable tool in order to present clinically relevant white matter tracts to neurological clinicians and researchers. Anat Rec, 296:340-349, 2013. V C 2013 Wiley Periodicals, Inc.Key words: brain; diffusion tensor imaging; dog; anatomy Since a few years, Magnetic Resonance Imaging is a reference technique for imaging the brain in different planes (sagittal, transversal, coronal) and the use of 1,5T to 7T MRI allows more and more accurate and detailed visualization of white matter localization than conventional CT-Scan and X-Ray (Van Thielen et al., 2010). However, an atlas of all the white matter tracts would be particularly useful for providing detailed anatomical data that is not available in studies based on conventional MRI data (Lawes et al., 2008). So we
The purpose of this study was to assess the feasibility of cone beam computed tomography (CBCT) in imaging dogs and cats for diagnostic dental veterinary applications. CBCT scans of heads of six dogs and two cats were made. Dental panoramic and multi-planar reformatted (MPR) para-sagittal reconstructions were created using specialized software. Image quality and visibility of anatomical landmarks were subjectively assessed by two observers. Good image quality was obtained for the MPR para-sagittal reconstructions through multiple teeth. The image quality of the panoramic reconstructions of dogs was moderate while the panoramic reconstructions of cats were poor since the images were associated with an increased noise level. Segmental panoramic reconstructions of the mouth seem to be useful for studying the dental anatomy especially in dogs. The results of this study using human dental CBCT technology demonstrate the potential of this scanning technology in veterinary medicine. Unfortunately, the moderate image quality obtained with the CBCT technique reported here seems to be inferior to the diagnostic image quality obtained from 2-dimensional dental radiographs. Further research is required to optimize scanning and reconstruction protocols for veterinary applications.
Recently, we published a first anatomical diffusion tensor imaging (DTI) atlas regarding white matter tracts in the canine brain. The purpose of this study was to show the significance of DTI in the revelation of the white matter fibres in the feline brain (i.e., to obtain an anatomical DTI atlas of images) and to descriptively compare these to previously obtained white matter fibre images of the canine brain. DTI MR Images of four cats euthanized for reasons other than neurological disorders were obtained with a 3 T system. Combined fractional anisotropic (FA) and directional maps were obtained within the hour after death. An experienced anatomist tracked white matter tracts of clinical relevance using the scanner software. After validation of these tracts, we compared relevant neurological connections between the cat and the dog. Comparison of cerebral structures between different species is easier when the three dimensional anatomy is visualized by using DTI. 3D rendered DTI images clearly show major differences in neurological architecture between cats and dogs for example, the more important space occupying role of the limbic system, and the less diffuse, less nodular, less pronounced and thinner fibre bundles in the feline brain compared to the canine brain (except for the cerebellum different parts connecting fibres passing through the brainstem which are pronouncedly developed). Anat Rec, 300:1270-1289, 2017. © 2017 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.