A yeast two-hybrid system was used to identify a protein that interacts with and enhances the human progesterone receptor (hPR) transcriptional activity without altering the basal activity of the promoter. Because the protein stimulated transactivation of all the steroid receptors tested, it has been termed steroid receptor coactivator-1 (SRC-1). Coexpression of SRC-1 reversed the ability of the estrogen receptor to squelch activation by hPR. Also, the amino terminal truncated form of SRC-1 acted as a dominant-negative repressor. Together, these results indicate that SRC-1 encodes a coactivator that is required for full transcriptional activity of the steroid receptor superfamily.
Although progesterone has been recognized as essential for the establishment and maintenance of pregnancy, this steroid hormone has been recently implicated to have a functional role in a number of other reproductive events. The physiological effects of progesterone are mediated by the progesterone receptor (PR), a member of the nuclear receptor superfamily of transcription factors. In most cases the PR is induced by estrogen, implying that many of the in vivo effects attributed to progesterone could also be the result of concomitantly administered estrogen. Therefore, to clearly define those physiological events that are specifically attributable to progesterone in vivo, we have generated a mouse model carrying a null mutation of the PR gene using embryonic stem cell/gene targeting techniques. Male and female embryos homozygous for the PR mutation developed normally to adulthood. However, the adult female PR mutant displayed significant defects in all reproductive tissues. These included an inability to ovulate, uterine hyperplasia and inflammation, severely limited mammary gland development, and an inability to exhibit sexual behavior. Collectively, these results provide direct support for progesterone's role as a pleiotropic coordinator of diverse reproductive events that together ensure species survival.
The nuclear receptor (NR) superfamily of transcription factors regulates gene expression in response to endocrine signaling, and recruitment of coregulators affords these receptors considerable functional flexibility. We will place historical aspects of NR research in context with current opinions on their mechanism of signal transduction, and we will speculate upon future trends in the field.
Steroid receptors and coactivator proteins are thought to stimulate gene expression by facilitating the assembly of basal transcription factors into a stable preinitiation complex. What is not clear, however, is how these transcription factors gain access to transcriptionally repressed chromatin to modulate the transactivation of specific gene networks in vivo. The available evidence indicates that acetylation of chromatin in vivo is coupled to transcription and that specific histone acetyltransferases (HATs) target histones bound to DNA and overcome the inhibitory effect of chromatin on gene expression. The steroid-receptor coactivator SRC-1 is a coactivator for many members of the steroid-hormone receptor superfamily of ligand-inducible transcription factors. Here we show that SRC-1 possesses intrinsic histone acetyltransferase activity and that it also interacts with another HAT, p300/CBP-associated factor (PCAF). The HAT activity of SRC-1 maps to its carboxy-terminal region and is primarily specific for histones H3 and H4. Acetylation by SRC-1 and PCAF of histones bound at specific promoters may result from ligand binding to steroid receptors and could be a mechanism by which the activation functions of steroid receptors and associated coactivators enhance formation of a stable preinitiation complex, thereby increasing transcription of specific genes from transcriptionally repressed chromatin templates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.