The present study determined whether the serotonin2A (5-HT2A) receptors in the hypothalamic paraventricular nucleus mediate the neuroendocrine responses to a peripheral injection of the 5-HT2A/2C receptor agonist (-)DOI [(-)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane]. The 5-HT2A receptor antagonist MDL100,907 ((+/-)-alpha(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol), the 5-HT2C receptor antagonist SB-242084 (6-chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline), or vehicle were microinjected bilaterally through a chronically implanted double-barreled cannula into the hypothalamic paraventricular nucleus 15 min before a peripheral injection of (-)DOI in conscious rats. (-)DOI significantly elevated plasma levels of oxytocin, prolactin, ACTH, corticosterone, and renin. Neither the 5-HT2A receptor antagonist nor the 5-HT2C receptor antagonist, injected alone, altered the basal levels of these hormones. MDL100,907 (0.748, 7.48, and 18.7 nmol) dose dependently inhibited the (-)DOI-induced increase in all of the hormones except corticosterone. In contrast, SB-242084 (10 nmol) did not inhibit (-)DOI-increased hormone levels. To confirm the presence of 5-HT2A receptors in the hypothalamic paraventricular nucleus, 5-HT2A receptors were mapped using immunohistochemistry. Densely labeled magnocellular neurons were observed throughout the anterior and posterior magnocellular subdivisions of the hypothalamic paraventricular nucleus. Moderately to densely labeled cells were also observed in parvicellular regions. Thus, it is likely that 5-HT2A receptors are present on neuroendocrine cells in the hypothalamic paraventricular nucleus. These data provide the first direct evidence that neuroendocrine responses to a peripheral injection of (-)DOI are predominantly mediated by activation of 5-HT2A receptors in the hypothalamic paraventricular nucleus.
The gonadotrophin-releasing hormone (GnRH) represents the final common pathway of a neuronal network that integrates multiple external and internal factors to control fertility. Among the many inputs GnRH neurones receive, oestrogens play the most important role. In females, oestrogen, in addition to the negative feedback, also exhibits a positive feedback influence upon the activity and output of GnRH neurones to generate the preovulatory luteinising hormone surge and ovulation. Until recently, the belief has been that the GnRH neurones do not contain oestrogen receptors and that the action of oestrogen upon GnRH neurones is indirect, involving several, oestrogen-sensitive neurotransmitter and neuromodulator systems that trans-synaptically regulate the activity of the GnRH neurones. Although this concept still holds for humans, recent studies indicate that oestrogen receptor-beta is expressed in GnRH neurones of the rat. This review provides three dimensional stereoscopic images of GnRH-immunoreactive (IR) and some peptidergic (neuropeptide Y-, substance P-, b-endorphin-, leu-enkaphalin-, corticotrophin hormonereleasing-and galanin-IR) and catecholaminergic neurones and the communication of these potential oestrogen-sensitive neuronal systems with GnRH neurones in the human hypothalamus. Because the postmortem human tissue does not allow the electron microscopic identification of synapses on GnRH neurones, the data presented here are based on light microscopic immunocytochemical experiments using high magnification with oil immersion, semithin sections or confocal microscopy.Gonadotrophin hormone-releasing hormone (GnRH; also called luteinising hormone-releasing hormone; LHRH), represents the final common pathway of a neuronal network that integrates multiple external and internal factors to control fertility. The release of GnRH into the hypophyseal portal circulation in the median eminence is pulsatile. Cyclic fluctuations in the amplitude and frequency of GnRH release, combined with changes in the secretory capacity of the pituitary gonadotrophs, are responsible for the generation of the luteinising hormone (LH) secretion profile observed over the course of the ovarian cycle. The pulsatile pattern of GnRH release is critical for normal ovarian function and in females; the massive increase in GnRH release generates the LH surge necessary for ovulation.Among many factors that integrate the activity of the GnRH neuronal system, oestrogens play the most important role. In the male, and for the greater part of the ovarian cycle in females, oestrogens exhibit a negative feedback action on LH secretion. However, in the female, oestrogen, in addition to the negative feedback, also exhibits a positive feedback influence upon the activity and output of GnRH neurones to generate the preovulatory LH surge and subsequent ovulation (1). Despite the critical effect of oestrogen in ovulation, before 2000, the scientific community was exploring the mechanism of oestrogen action based on the assumption that the GnRH n...
Neuropeptide Y (NPY) potentiates the effect of luteinizing hormone-releasing hormone (LHRH) on luteinizing hormone secretion in several species, including human. In addition to the pituitary sites, the interactions of the NPY and LHRH systems may involve diencephalic loci. However, the morphologic basis of this putative communication has not yet been elucidated in the human brain. To discover interaction sites, the distribution and connections of LHRH and NPY-immunoreactive (IR) neuronal elements in the human hypothalamus were investigated by means of light microscopic single- and double-label immunocytochemistry. NPY-IR perikarya and fibers were found to be widely distributed in the ventral diencephalon, with high densities in the preopticoseptal, periventricular, and tuberal regions. Small neuronal cell groups were infiltrated with a dense network of varicose NPY-IR fibers in the lateral preoptic area. The LHRH-IR perikarya were located mainly in the preopticoseptal region, diagonal band of Broca, lamina terminalis, and periventricular and infundibular nuclei. A few LHRH-IR neurons and fibers were scattered in the mamillary region. The overlap between the NPY and LHRH systems was apparent in the periventricular, paraventricular, and infundibular nuclei. Double-labeling immunohistochemistry showed NPY-IR axon varicosities in contact with LHRH-IR perikarya and main dendrites. The putative innervation of LHRH neurons by NPY-IR fibers was also seen in 1-microm-thick plastic sections and with confocal laser scanning microscope, thus further supporting the functional impact of NPY-IR terminals on LHRH-IR neurons. The present findings suggest that the hypophysiotropic LHRH-synthesizing neurons may be innervated by intrahypothalamic NPY-IR fibers. Confirmation by ultrastructural analysis would demonstrate that the LHRH system in the human hypothalamus is regulated by NPY, as has been demonstrated in nonhuman species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.