Film forming, stable hybrid latexes made of methyl metacrylate (MMA), butyl acrylate (BA) and 2-hydroxyethyl methacrylate (HEMA) copolymer reinforced with modified multiwalled carbon nanotubes (MWCNTs) were synthesized by in situ miniemulsion polymerization. The MWCNTs were pretreated by an air sonication process and stabilized by polyvinylpyrrolidone. The presence of the MWCNTs had no significant effect on the polymerization kinetics, but strongly affected the polymer characteristics (T
g and insoluble polymer fraction). The performance of the in situ composites was compared with that of the neat polymer dispersion as well as with those of the polymer/MWCNT physical blends. The in situ composites showed the presence of an additional phase likely due to the strong interaction between the polymer and MWNCTs (including grafting) that reduced the mobility of the polymer chains. As a result, a substantial increase of both the storage and the loss moduli was achieved. At 60 °C, which is above the main transition region of the polymer, the in situ composites maintained the reinforcement, whereas the blends behaved as a liquid-like material. This suggests the formation of a 3D network, in good agreement with the high content of insoluble polymer in the in situ composites.
The combination of graphene (G) and multi-walled carbon nanotubes (MWCNTs) creates three-dimensional hybrid structures particularly suitable as next-generation electrical interface materials. Nevertheless, efficient mixing of the nanopowders is challenging, unless previous disaggregation and eventual surface modification of both is reached. To avoid use of solvents and multistep purification process for synthesis of stable G/MWCNTs hybrids, herein, a novel dry method based on an air sonication process was used. Taking advantage from the vigorous turbulent currents generated by powerful ultrasonication in air that induces strong thermal convection or radiation to and from the particles, it simultaneously ensures disentanglement of the large MWCNT bundles and G exfoliation and their only mild surface modifications. By changing the ratio between MWCNTs and G, a range of hybrids was obtained, different in surface morphology and chemistry. These hybrids have shown great potential as sensing material for designing mass-based sensors for toxic gases and chemiresistor for vapors detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.