Hanna-Boutros B, Sangari S, Karasu A, Giboin LS, MarchandPauvert V. Task-related modulation of crossed spinal inhibition between human lower limbs. J Neurophysiol 111: 1865-1876, 2014. First published February 5, 2014 doi:10.1152/jn.00838.2013.-Crossed reflex action mediated by muscle spindle afferent inputs has recently been revealed in humans. This raised the question of whether a complex spinal network involving commissural interneurons receiving inputs from proprioceptors and suprasegmental structures, as described in cats, persists in humans and contributes to the interlimb coordination during movement. First, we investigated the neurophysiological mechanisms underlying crossed reflex action between ankle plantar flexors and its corticospinal control from primary motor cortex. Second, we studied its modulation during motor tasks. We observed crossed inhibition in contralateral soleus motoneurons occurring with about 3 ms central latency, which is consistent with spinal transmission through oligosynaptic pathway. The early phase of inhibition was evoked with lower stimulus intensity than the late phase, suggesting mediation by group I and group II afferents, respectively. The postsynaptic origin of crossed inhibition is confirmed by the finding that both H-reflex and motor-evoked potential were reduced upon conditioning stimulation. Transcranial magnetic stimulation over ipsilateral and contralateral primary motor cortex reduced crossed inhibition, especially its late group II part. Last, late group II crossed inhibition was particularly depressed during motor tasks, especially when soleus was activated during the walking stance phase. Our results suggest that both group I and group II commissural interneurons participate in crossed reflex actions between ankle plantar flexors. Neural transmission at this level is depressed by descending inputs activated by transcranial magnetic stimulation over the primary motor cortex or during movement. The specific modulation of group II crossed inhibition suggests control from monoaminergic midbrain structures and its role for interlimb coordination during locomotion.H-reflex; TMS; commissural interneurons; corticospinal; locomotion SEVERAL SPINAL PATHWAYS INVOLVING commissural interneurons mediate crossed reflex actions from proprioceptors. In cat lumbar cord, these pathways are closely interconnected and incorporated into complex networks coordinating muscle activity on both sides (Jankowska 2008).
Reciprocal Ia inhibition constitutes a key segmental neuronal pathway for coordination of antagonist muscles. In this study, we investigated the soleus H-reflex and reciprocal inhibition exerted from flexor group Ia afferents on soleus motoneurons during standing and walking in 15 healthy subjects following transcranial magnetic stimulation (TMS). The effects of separate TMS or deep peroneal nerve (DPN) stimulation and the effects of combined (TMS + DPN) stimuli on the soleus H-reflex were assessed during standing and at mid- and late stance phases of walking. Subthreshold TMS induced short-latency facilitation on the soleus H-reflex that was present during standing and at midstance but not at late stance of walking. Reciprocal inhibition was increased during standing and at late stance but not at the midstance phase of walking. The effects of combined TMS and DPN stimuli on the soleus H-reflex significantly changed between tasks, resulting in an extra facilitation of the soleus H-reflex during standing and not during walking. Our findings indicate that corticospinal inputs and Ia inhibitory interneurons interact at the spinal level in a task-dependent manner, and that corticospinal modulation of reciprocal Ia inhibition is stronger during standing than during walking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.