A series of dinuclear M(III) (M = Fe or Ga) catecholate complexes has been prepared using bisbidentate catecholate ligands (L). The products contain discrete, dinuclear M2(L)3 6- anions featuring pseudo-octahedral coordination centers. The helical nature of the dinuclear complexes has been established by CD spectroscopy and X-ray crystallography. The salt (N(CH3)4)6Ga2(L 3 )3 (L 3 = N,N‘-bis(2,3-dihydroxy-4-carbamoylbenzoyl)-1,4-phenylenediamine) has been characterized by X-ray diffraction; crystals are hexagonal, space group P3̄1c with unit cell dimensions a = 14.283(2) Å, c = 42.966(2) Å, V = 7591 Å3, and Z = 2. Variable-temperature 1H NMR experiments demonstrate that the configuration inversion of the enantiomers of K6Ga2(L 4 )3 (L 4 = N,N‘-bis(2,3-dihydroxy-4-(isopropylcarbamoyl)benzoyl)-1,4-phenylenediamine) and K6Ga2(L 5 )3 (L 5 = N-(2,3-dihydroxy-4-(isopropylcarbamoyl)benzoyl)-N‘-(2,3-dimethoxy-4-(methylcarbamoyl)benzoyl)-1,4-phenylenediamine) is facile in D2O or DMSO-d 6. The mechanism of inversion has been probed by dynamic NMR spectroscopy, using the complex K6Ga2(L 5 )3 which exists in two isomeric forms in solution, cis- and trans. The intramolecular inversion of the dinuclear helicates occurs without cis−trans isomerization and proceeds by independent trigonal twisting of each metal center, affording the heterochiral meso complex as an intermediate. The free energy of activation for the inversion of K6Ga2(L 4 )3 in D2O at p[D] = 12.1 is ΔG ⧧ 298 = 79(2) kJ mol-1, with ΔH = 75(2) kJ mol-1 and ΔS ⧧ = −12(6) J mol-1 K-1. Under slightly acidic conditions a proton-assisted pathway becomes dominant and the rate of inversion shows a second-order dependence in [D+]. The heterochiral meso complex of Ga2(L 4 )6 3- is shown to be a transient kinetic intermediate in the (Λ,Λ) ↔ (Δ,Δ) inversion process of the helicate complex.
The catechol siderophore analog K3[Ga(3)3], 4 (H2 3 = 2,3-dihydroxy-N,N‘-diisopropylterephthalamide), is D 3-symmetric in aqueous solution, and exists in two enantiomeric forms, Δ-4 and Λ-4. Variable temperature NMR experiments demonstrate that the inversion of the enantiomers of 4 in D2O is facile. The rate of inversion is independent of pH above pH 8. The mechanism is intramolecular. From line-shape analysis the free energy of activation ΔG ⧧ 298 = 67.4(9) kJ mol-1 in D2O at pD 12.1, with ΔH ⧧ = 58.5(6) kJ mol-1 and ΔS ⧧ = −0.030(9) kJ mol-1 K-1. Below pD 8 the rate of inversion for 4 is pD dependent and initially first order in [D+]. Potentiometric titrations reveal that 4 protonates in two one-proton steps with log K HML 3 = 4.66(4) and log K H 2 ML 3 = 3.99(7). In DMSO-d 6, formation of a tight contact ion pair between K+ and [Ga(3)3]3- ions increases the free energy barrier to inversion by ∼7 kJ mol-1. The complex K3[Ga(9)3], 10 (H2 9 = 2,3-dihydroxy-N-tert-butyl-N‘-benzylterephthalamide), was prepared to elucidate the mechanism of inversion by dynamic NMR spectroscopy, using the fact that 10 exists in two isomeric forms, cis-10 and trans-10, which are of C 3 and C 1 symmetry in solution. The ratio cis-10:trans-10 is 0.78(3) at ambient temperature in D2O or DMSO-d 6. Two processes are distinguishable on the NMR time scale in D2O or DMSO-d 6, cis- 10−trans- 10 isomerization and the inversion of the enantiomers of trans-10. Both processes proceed intramolecularly with T c = 295(1) K for Λ-trans-10 to Δ-trans-10 inversion and T c = 335(1) K for cis-10 to trans-10 isomerization in D2O at pD 9.5. The discrete exchange pattern of the tert-butyl resonances during inversion of trans-10 confirms that the reaction proceeds by a trigonal twist mechanism via a trigonal prismatic transition state. The free energy barriers to inversion are ΔG ⧧ 295 = 60 kJ mol-1 in D2O (pD 9.8) and ΔG ⧧ 327 = 67 kJ mol-1 in DMSO-d 6.
Metallkomplexe mit hydrophoben Bindungstaschen erfahren wegen ihrer ungewöhnlichen chemischen Reaktivität gegenwärtig ein groûes Interesse. Die meisten dieser Verbindungen sind einkernige Spezies. Sie wurden zur Stabilisierung von reaktiven Intermediaten, [1] für selektive organische Transformationen [2] oder als Katalysatoren für Reaktionen, die vom Reaktionsmedium abhängen, verwendet. [3] Es wurden auch bereits einige Verbindungen entwickelt, um hydrophobe Umgebungen von Substratbindungsstellen in Metalloproteinen nachzubilden. [4] Diese Befunde veranlassten uns, Schema 1. Strukturen der Liganden und schematische Darstellung der Strukturen der entsprechenden Metallkomplexe vom Typ A oder B (X Substratbindungsstelle der Komplexe).Zweikernkomplexe von peralkylierten Amin-Thiophenol-Makrocyclen zu untersuchen, um damit einen hydrophoben Käfig um eine freie Koordinationsstelle erzeugen zu können. Wir beschreiben hier die Synthesen und Strukturen von zweikernigen Ni II -, Co II -und Zn II -Komplexen des permethylierten Makrocyclus (L Me ) 2À (siehe Schema 1) sowie deren bemerkenswerte Eigenschaft, Kohlendioxid zu fixieren und zu transformieren.Es wurde bereits gezeigt, dass sich die Brückenliganden in Zweikernkomplexen des Typs A viel leichter ersetzen lassen, wenn anstelle von (L H ) 2À der permethylierte Ligand (L Me ) 2À eingesetzt wird (Schema 1). [5] So kann der Hydroxo-verbrückte Komplex 3 (Tabelle 1), der den Ausgangspunkt dieser Arbeit darstellt, durch Reaktion der m-Cl-Spezies 2 mit Natriumhydroxid in Methanol in hohen Ausbeuten erhalten werden.
A series of dinickel(II) complexes with the 24-membered macrocyclic hexaazadithiophenol ligand H(2)L(Me) was prepared and examined. The doubly deprotonated form (L(Me))(2-) forms complexes of the type [(L(Me))Ni2II(mu-L')](n+) with a bioctahedral N(3)Ni(II)(mu-SR)(2)(mu-L')Ni(II)N(3) core and an overall calixarene-like structure. The bridging coordination site L' is accessible for a wide range of exogenous coligands. In this study L'=NO(3)(-), NO(2)(-), N(3)(-), N(2)H(4), pyrazolate (pz), pyridazine (pydz), phthalazine (phtz), and benzoate (OBz). Crystallographic studies reveal that each substrate binds in a distinct fashion to the [(L(Me))Ni(2)](2+) portion: NO(2)(-), N(2)H(4), pz, pydz, and phtz form mu(1,2)-bridges, whereas NO(3)(-), N(3)(-), and OBz(-) are mu(1,3)-bridging. These distinctive binding motifs and the fact that some of the coligands adopt unusual conformations is discussed in terms of complementary host-guest interactions and the size and form of the binding pocket of the [(L(Me))Ni(2)](2+) fragment. UV/Vis and electrochemical studies reveal that the solid-state structures are retained in the solution state. The relative stabilities of the complexes indicate that the [(L(Me))Ni(2)](2+) fragment binds anionic coligands preferentially over neutral ones and strong-field ligands over weak-field ligands. Secondary van der Waals interactions also contribute to the stability of the complexes. Intramolecular ferromagnetic exchange interactions are present in the nitrito-, pyridazine-, and the benzoato-bridged complexes where J=+6.7, +3.5, and +5.8 cm(-1) (H=-2 JS(1)S(2), S(1)=S(2)=1) as indicated by magnetic susceptibility data taken from 300 to 2 K. In contrast, the azido bridge in [(L(Me))Ni(2)(mu(1,3)-N(3))](+) results in an antiferromagnetic exchange interaction J=-46.7 cm(-1). An explanation for this difference is qualitatively discussed in terms of bonding differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.