Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi–Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites—rather than individual acceptor molecules—should be regarded as the dopants in such systems.
Chemical doping of organic semiconductors using molecular dopants plays a key role in the fabrication of efficient organic electronic devices. Although a variety of stable molecular p-dopants have been developed and successfully deployed in devices in the past decade, air-stable molecular n-dopants suitable for materials with low electron affinity are still elusive. Here we demonstrate that photo-activation of a cleavable air-stable dimeric dopant can result in kinetically stable and efficient n-doping of host semiconductors, whose reduction potentials are beyond the thermodynamic reach of the dimer's effective reducing strength. Electron-transport layers doped in this manner are used to fabricate high-efficiency organic light-emitting diodes. Our strategy thus enables a new paradigm for using air-stable molecular dopants to improve conductivity in, and provide ohmic contacts to, organic semiconductors with very low electron affinity.
We used partially fluorinated alkyl and aromatic\ud phosphonates as model systems with similar molecular dipole\ud moments to form self-assembled monolayers (SAMs) on the\ud Zn-terminated ZnO(0001) surface. The introduced surface\ud dipole moment allows tailoring the ZnO work function to tune\ud the energy levels at the inorganic−organic interface to organic\ud semiconductors, which should improve the efficiency of charge\ud injection/extraction or exciton dissociation in hybrid electronic\ud devices. By employing a wide range of surface characterization\ud techniques supported by theoretical calculations, we present a\ud detailed picture of the phosphonates’ binding to ZnO, the\ud molecular orientation in the SAM, their packing density, as\ud well as the concomitant work function changes. We show that\ud for the aromatic SAM the interaction between neighboring molecules is strong enough to drive the formation of a more densely packed monolayer with a higher fraction of bidentate binding to ZnO, whereas for the alkyl SAM a lower packing density was found with a higher fraction of tridentate binding
Molecular doping allows enhancement and precise control of electrical properties of organic semiconductors, and is thus of central technological relevance for organic (opto‐) electronics. Beyond single‐component molecular electron acceptors and donors, organic salts have recently emerged as a promising class of dopants. However, the pertinent fundamental understanding of doping mechanisms and doping capabilities is limited. Here, the unique capabilities of the salt consisting of a borinium cation (Mes2B+; Mes: mesitylene) and the tetrakis(penta‐fluorophenyl)borate anion [B(C6F5)4]− is demonstrated as p‐type dopant for polymer semiconductors. With a range of experimental methods, the doping mechanism is identified to comprise electron transfer from the polymer to Mes2B+, and the positive charge on the polymer is stabilized by [B(C6F5)4]−. Notably, the former salt cation leaves during processing and is not present in films. The anion [B(C6F5)4]− even enables the stabilization of polarons and bipolarons in poly(3‐hexylthiophene), not yet achieved with other molecular dopants. From doping studies with high ionization energy polymer semiconductors, the effective electron affinity of Mes2B+[B(C6F5)4]− is estimated to be an impressive 5.9 eV. This significantly extends the parameter space for doping of polymer semiconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.