This paper is in the line of the recent literature on weak instruments, which, following the seminal approach of Stock and Wright captures weak identification by drifting population moment conditions. In contrast with most of the existing literature, we do not specify a priori which parameters are strongly or weakly identified. We rather consider that weakness should be related specifically to instruments, or more generally to the moment conditions. In addition, we focus here on the case dubbed nearly-weak identification where the drifting DGP introduces a limit rank deficiency reached at a rate slower than root-T. This framework ensures the consistency of Generalized Method of Moments (GMM) estimators of all parameters, but at a rate possibly slower than usual. It also validates the GMM-LM test with standard formulas. We then propose a comparative study of the power of the LM test and its modified version, or K-test proposed by Kleibergen. Finally, after a well-suited rotation in the parameter space, we identify and estimate directions where root-T convergence is maintained. These results are all directly relevant for practical applications without requiring the knowledge or the estimation of the slower rate of convergence. Copyright (C) The Author(s). Journal compilation (C) Royal Economic Society 2009
Abstract:This paper extends the asymptotic theory of GMM inference to allow sample counterparts of the estimating equations to converge at (multiple) rates, different from the usual square-root of the sample size. In this setting, we provide consistent estimation of the structural parameters. In addition, we define a convenient rotation in the parameter space (or reparametrization) which permits to disentangle the different rates of convergence. More precisely, we identify special linear combinations of the structural parameters associated with a specific rate of convergence. Finally, we demonstrate the validity of usual inference procedures, like the overidentification test and Wald test, with standard formulas. It is important to stress that both estimation and testing work without requiring the knowledge of the various rates. However, the assessment of these rates is crucial for (asymptotic) power considerations. Possible applications include econometric problems with two dimensions of asymptotics, due to trimming, tail estimation, infill asymptotic, social interactions, kernel smoothing or any kind of regularization. JEL classification: C32; C12; C13; C51.
We consider models defined by a set of moment restrictions that may be subject to weak identification. We propose a testing procedure to assess whether instruments are "too weak" for standard (Gaussian) asymptotic theory to be reliable. Since the validity of standard asymptotics for GMM rests upon a Taylor expansion of the first order conditions, we distinguish two cases: (i) models that are either linear or separable in the parameters of interest (ii) general models that are neither linear nor separable. Our testing procedure is similar in both cases, but our null hypothesis of weak identification for a nonlinear model is broader than the popular one. Our test is straightforward to apply and allows to test the null hypothesis of weak identification of specific subvectors without assuming identification of the components not under test. In the linear case, it can be seen as a generalization of the popular first-stage F-test but allows us to fix its shortcomings in case of heteroskedasticity. In simulations, our test is well behaved when compared to contenders, both in terms of size and power. In particular, the focus on subvectors allows us to have power to reject the null of weak identification on some components of interest. This observation may explain why, when applied to the estimation of the Elasticity of Intertemporal Substitution, our test is the only one to find matching results for every country under the two symmetric popular specifications: the intercept parameter is always found strongly identified, whereas the slope parameter is always found weakly identified.
We consider models defined by conditional moment restrictions under semi-strong identification. Identification strength is directly defined through the conditional moments that flatten as the sample size increases. The framework allows for different identification strengths across parameter's components. We propose a minimum distance estimator that is robust to semi-strong identification and does not rely on the choice of a user-chosen parameter, such as the number of instruments or any other smoothing parameter. Our method yields consistent and asymptotically normal estimators of each parameter's components. Heteroskedasticity-robust inference is possible through Wald testing without prior knowledge of the identification pattern. In simulations, we find that our estimator is competitive with alternative estimators based on many instruments. In particular, it is well-centered with better coverage rates for confidence intervals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.