This paper presents a simple technique for performing Batik image retrieval using the Convolutional Neural Network (CNN) approach. Two CNN models, i.e. supervised and unsupervised learning approach, are considered to perform end-to-end feature extraction in order to describe the content of Batik image. The distance metrics measure the similarity between the query and target images in database based on the feature generated from CNN architecture. As reported in the experimental section, the proposed supervised CNN model achieves better performance compared to unsupervised CNN in the Batik image retrieval system. In addition, image feature composed from the proposed CNN model yields better performance compared to that of the handcrafted feature descriptor. Yet, it demonstrates the superiority performance of deep learning-based approach in the Batik image retrieval system.
This paper presents a new halftoning-based block truncation coding (HBTC) image reconstruction using sparse representation framework. The HBTC is a simple yet powerful image compression technique, which can effectively remove the typical blocking effect and false contour. Two types of HBTC methods are discussed in this paper, i.e., ordered dither block truncation coding (ODBTC) and error diffusion block truncation coding (EDBTC). The proposed sparsity-based method suppresses the impulsive noise on ODBTC and EDBTC decoded image with a coupled dictionary containing the HBTC image component and the clean image component dictionaries. Herein, a sparse coefficient is estimated from the HBTC decoded image by means of the HBTC image dictionary. The reconstructed image is subsequently built and aligned from the clean, i.e. non-compressed image dictionary and predicted sparse coefficient. To further reduce the blocking effect, the image patch is firstly identified as "border" and "non-border" type before applying the sparse representation framework. Adding the Laplacian prior knowledge on HBTC decoded image, it yields better reconstructed image quality. The experimental results demonstrate the effectiveness of the proposed HBTC image reconstruction. The proposed method also outperforms the former schemes in terms of reconstructed image quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.