Many scientific disciplines are now data and information driven, and new scientific knowledge is often gained by scientists putting together data analysis and knowledge discovery "pipelines". A related trend is that more and more scientific communities realize the benefits of sharing their data and computational services, and are thus contributing to a distributed data and computational community infrastructure (a.k.a. "the Grid"). However, this infrastructure is only a means to an end and scientists ideally should be bothered little with its existence. The goal is for scientists to focus on development and use of what we call scientific workflows. These are networks of analytical steps that may involve, e.g., database access and querying steps, data analysis and mining steps, and many other steps including computationally intensive jobs on high performance cluster computers. In this paper we describe characteristics of and requirements for scientific workflows as identified in a number of our application projects. We then elaborate on Kepler, a particular scientific workflow system, currently under development across a number of scientific data management projects. We describe some key features of Kepler and its underlying Ptolemy ii system, planned extensions, and areas of future research. Kepler is a communitydriven, open source project, and we always welcome related projects and new contributors to join. *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.