In chronic kidney disease (CKD), uremic solutes accumulate in blood and tissues. These compounds probably contribute to the marked increase in cardiovascular risk during the progression of CKD. The uremic solutes indoxyl sulfate and indole-3-acetic acid (IAA) are particularly deleterious for endothelial cells. Here we performed microarray and comparative PCR analyses to identify genes in endothelial cells targeted by these two uremic solutes. We found an increase in endothelial expression of tissue factor in response to indoxyl sulfate and IAA and upregulation of eight genes regulated by the transcription factor aryl hydrocarbon receptor (AHR). The suggestion by microarray analysis of an involvement of AHR in tissue factor production was confirmed by siRNA inhibition and the indirect AHR inhibitor geldanamycin. These observations were extended to peripheral blood mononuclear cells. Tissue factor expression and activity were also increased by AHR agonist dioxin. Finally, we measured circulating tissue factor concentration and activity in healthy control subjects and in patients with CKD (stages 3-5d), and found that each was elevated in patients with CKD. Circulating tissue factor levels were positively correlated with plasma indoxyl sulfate and IAA. Thus, indolic uremic solutes increase tissue factor production in endothelial and peripheral blood mononuclear cells by AHR activation, evoking a 'dioxin-like' effect. This newly described mechanism of uremic solute toxicity may help understand the high cardiovascular risk of CKD patients
In CKD, uremic solutes may induce endothelial dysfunction, inflammation, and oxidative stress, leading to increased cardiovascular risk. We investigated whether the uremic solute indole-3 acetic acid (IAA) predicts clinical outcomes in patients with CKD and has prooxidant and proinflammatory effects. We studied 120 patients with CKD. During the median study period of 966 days, 29 patients died and 35 experienced a major cardiovascular event. Kaplan-Meier analysis revealed that mortality and cardiovascular events were significantly higher in the higher IAA group (IAA.3.73 mM) than in the lower IAA group (IAA,3.73 mM). Multivariate Cox regression analysis demonstrated that serum IAA was a significant predictor of mortality and cardiovascular events after adjustments for age and sex; cholesterol, systolic BP, and smoking; C-reactive protein, phosphate, body mass index, and albumin; diastolic BP and history of cardiovascular disease; and uremic toxins p-cresyl sulfate and indoxyl sulfate. Notably, IAA level remained predictive of mortality when adjusted for CKD stage. IAA levels were positively correlated with markers of inflammation and oxidative stress: C-reactive protein and malondialdehyde, respectively. In cultured human endothelial cells, IAA activated an inflammatory nongenomic aryl hydrocarbon receptor (AhR)/p38MAPK/NF-kB pathway that induced the proinflammatory enzyme cyclooxygenase-2. Additionally, IAA increased production of endothelial reactive oxygen species. In conclusion, serum IAA may be an independent predictor of mortality and cardiovascular events in patients with CKD. In vitro, IAA induces endothelial inflammation and oxidative stress and activates an inflammatory AhR/p38MAPK/NF-kB pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.