Hox proteins are key regulators of animal development, providing positional identity and patterning information to cells along the rostrocaudal axis of the embryo. Although their embryonic expression and function are well characterized, their presence and biological importance in adulthood remains poorly investigated. We provide here the first detailed quantitative and neuroanatomical characterization of the expression of the 39 Hox genes in the adult mouse brain. Using RT-qPCR we determined the expression of 24 Hox genes mainly in the brainstem of the adult brain, with low expression of a few genes in the cerebellum and the forebrain. Using in situ hybridization (ISH) we have demonstrated that expression of Hox genes is maintained in territories derived from the early segmental Hox expression domains in the hindbrain. Indeed, we show that expression of genes belonging to paralogy groups PG2-8 is maintained in the hindbrain derivatives at adulthood. The spatial colinearity, which characterizes the early embryonic expression of Hox genes, is still observed in sequential antero-posterior boundaries of expression. Moreover, the main mossy and climbing fibres precerebellar nuclei express PG2-8 Hox genes according to their migration origins. Second, ISH confirms the presence of Hox gene transcripts in territories where they are not detected during development, suggesting neo-expression in these territories in adulthood. Within the forebrain, we have mapped Hoxb1, Hoxb3, Hoxb4, Hoxd3 and Hoxa5 expression in restricted areas of the sensory cerebral cortices as well as in specific thalamic relay nuclei. Our data thus suggest a requirement of Hox genes beyond their role of patterning genes, providing a new dimension to their functional relevance in the central nervous system.
Hoxa5 is a member of the Hox gene family, which plays critical roles in successive steps of the central nervous system formation during embryonic and fetal development. Hoxa5 expression in the adult mouse brain has been reported, suggesting that this gene may be functionally required in the brain after birth. To provide further insight into the Hoxa5 expression pattern and potential functions in the brain, we have characterized its neuroanatomical profile from embryonic stages to adulthood. While most Hox mapping studies have been based solely on transcript analysis, we extended our analysis to HOXA5 protein localization in adulthood using specific antibodies. Our results show that Hoxa5 expression appears in the most caudal part of the hindbrain at fetal stages, where it is maintained until adulthood. In the medulla oblongata and pons, we detected Hoxa5 expression in many precerebellar neurons and in several nuclei implicated in the control of autonomic functions. In these territories, the HOXA5 protein is present solely in neurons, specifically in γ-aminobutyric acid (GABA)ergic, glutamatergic, and catecholaminergic neurons. Finally, we also detected Hoxa5 transcripts, but not the HOXA5 protein, in the thalamus and the cortex, from postnatal stages to adult stages, and in the cerebellum at adulthood. We provide evidence that some larger variants of Hoxa5 transcripts are present in these territories. Our mapping analysis allowed us to build hypotheses regarding HOXA5 functions in the nervous system after birth, such as a potential role in the establishment and refinement/plasticity of precerebellar circuits during postnatal and adult life. J. Comp. Neurol. 525:1155-1175, 2017. © 2016 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.