The artery wall is equipped with a water permeation barrier that allows blood to flow at high pressure without significant water leak. The precise location of this barrier is unknown despite its importance in vascular function and its contribution to many vascular complications when it is compromised. Herein we map the water permeability in intact arteries, using coherent anti-Stokes Raman scattering (CARS) microscopy and isotopic perfusion experiments. Generation of the CARS signal is optimized for water imaging with broadband excitation. We identify the water permeation barrier as the endothelial basolateral membrane and show that the apical membrane is highly permeable. This is confirmed by the distribution of the AQP1 water channel within endothelial membranes. These results indicate that arterial pressure equilibrates within the endothelium and is transmitted to the supporting basement membrane and internal elastic lamina macromolecules with minimal deformation of the sensitive endothelial cell. Disruption of this pressure transmission could contribute to endothelial cell dysfunction in various pathologies.
[1] Millimeter-wave interferometric synthetic aperture imagers are currently being developed for short-range applications such as concealed weapons detection. In contrast to the traditional snapshot imaging approach, we investigate the potential of mechanical scanning between the scene and the array in order to reduce the number of antennas and correlators. We assess the trade-off between this hardware reduction, the radiometric sensitivity and the imaging frame rate of the system. We show that rotational scanning achieves a more uniform coverage of the (u, v) plane than the more conventional linear scanning. We use a genetic algorithm to optimize two-dimensional arrays for maximum uniform (u, v) coverage after a rotational mechanical scan and demonstrates improvements in the array point spread function. Imaging performance is assessed with simulated millimeter-wave scenes. Results show an increased image quality is achieved with the optimized array compared with a conventional power law Y-shaped array. Finally we discuss the increased demands on system stability and calibration that the increased acquisition time of the proposed technique places.Citation: Lucotte, B. M., B. Grafulla-González, and A. R. Harvey (2009), Array rotation aperture synthesis for short-range imaging at millimeter wavelengths, Radio Sci., 44, RS1006,
SummaryUsing the intrinsic optical properties of collagen and elastin, two-photon microscopy was applied to evaluate the threedimensional (3D) macromolecular structural development of the mouse thoracic aorta from birth to 60 days old. Baseline development was established in the Scavenger Receptor Class B Type I-Deficient, Hypomorphic Apolipoprotein ER61 (SR-BI KO/ApoeR61 h/h ) mouse in preparation for modeling atherosclerosis. Precise dissection enabled direct observation of the artery wall in situ. En-face, optical sectioning of the aorta provided a novel assessment of the macromolecular structural development. During aortic development, the undulating lamellar elastin layers compressed consistent with the increases in mean aortic pressure with age. In parallel, a net increase in overall wall thickness (p<0.05, in day 60 compared with day 1 mice) occurred with age whereas the ratio of the tunicas adventitia and media to full aortic thickness remained nearly constant across age groups (~1:2.6, respectively). Histochemical analyses by brightfield microscopy and ultrastructure validated structural proteins and lipid deposition findings derived from two-photon microscopy. Development was associated with decreased decorin but not biglycan proteoglycan expression. This non-destructive 3D in situ approach revealed the aortic wall microstructure development. Coupling this approach with the intrinsic optical properties of the macromolecules may provide unique vascular wall 3D structure in many pathological conditions, including aortic atherosclerosis, dissections and aneurysms. (J Histochem Cytochem 63:8-21, 2015)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.