Plant suspension cells are interesting hosts for the heterologous production of pharmacological proteins such as antibodies. They have the advantage to facilitate the containment and the application of good manufacturing practices. Furthermore, antibodies can be secreted to the extracellular medium, which makes the purification steps much simpler. However, improvements are still to be made regarding the quality and the production yield. For instance, the inactivation of proteases and the humanization of glycosylation are both important targets which require either gene silencing or gene inactivation. To this purpose, CRISPR-Cas9 is a very promising technique which has been used recently in a series of plant species, but not yet in plant suspension cells. Here, we sought to use the CRISPR-Cas9 system for gene inactivation in Nicotiana tabacum BY-2 suspension cells. We transformed a transgenic line expressing a red fluorescent protein (mCherry) with a binary vector containing genes coding for Cas9 and three guide RNAs targeting mCherry restriction sites, as well as a bialaphos-resistant (bar) gene for selection. To demonstrate gene inactivation in the transgenic lines, the mCherry gene was PCR-amplified and analyzed by electrophoresis. Seven out of 20 transformants displayed a shortened fragment, indicating that a deletion occurred between two target sites. We also analyzed the transformants by restriction fragment length polymorphism and observed that the three targeted restriction sites were hit. DNA sequencing of the PCR fragments confirmed either deletion between two target sites or single nucleotide deletion. We therefore conclude that CRISPR-Cas9 can be used in N. tabacum BY2 cells.
Summary Nicotiana tabacum suspension cells have been widely used to produce monoclonal antibodies, but the yield of secreted antibodies is usually low probably because of proteolytic degradation. Most IgGs that have been expressed in suspension cells have been of the human IgG1 isotype. In this study, we examined whether other isotypes displayed the same sensitivity to proteolytic degradation and whether the choice of plant host species mattered. Human serum IgG displayed different degradation profiles when incubated in spent culture medium from N. tabacum, Nicotiana benthamiana or Arabidopsis thaliana suspension cells. Zymography showed that the protease profile was host species dependent. Three human isotypes, IgG1, IgG2 and IgG4, and a mouse IgG2a were provided with the same heavy‐ and light‐chain variable regions from an anti‐human IgM antibody and expressed in N. tabacum cv. BY‐2 and A. thaliana cv. Col‐0 cells. Although all tested isotypes were detected in the extracellular medium using SDS‐PAGE and a functional ELISA, up to 10‐fold differences in the level of intact antibody were found according to the isotype expressed, to the host species and to the culture conditions. In the best combination (BY‐2 cells secreting human IgG1), we reported accumulation of more than 30 mg/L of intact antibody in culture medium. The possibility of using IgG constant regions as a scaffold to allow stable accumulation of antibodies with different variable regions was demonstrated for human IgG2 and mouse IgG2a.
Transcription promoters of heat shock protein (HSP) genes have been used to control the expression of heterologous proteins in plants and plant cells. To obtain a strong HSP promoter that is functionally active in Nicotiana tabacum BY-2 cells, we set out to identify a promoter of an endogenous gene showing high activation of expression by heat. An N. tabacum BY-2 cell culture was treated for 8 h at 37°C and the cell protein extract analyzed by two-dimensional electrophoresis. A major spot was identified by mass spectrometry as belonging to the small HSP family. The promoter regions and the 5' and 3' untranslated regions of two genes, NtHSP3A and NtHSP3B, with sequences fitting the protein identified were cloned and fused to a hybrid reporter gene coding for β-glucuronidase (GUS) and a yellow fluorescent protein. These constructs were introduced into N. tabacum BY2 cells by Agrobacterium tumefaciens-mediated transformation. Both promoters conferred similar heat-induced GUS expression. In the best heat shock condition, GUS activity was increased 200 fold and reached 285 pmol min(-1) μg protein(-1). Up-scaling in a 4-l bioreactor resulted in similar heat-induced expression. The NtHSP3A promoter was then used to drive the expression of NtPDR1, a plasma membrane transporter belonging to the pleiotropic drug resistance family. No expression was observed at 25°C, while, at 37°C, expression was similar to that obtained using a strong constitutive promoter. These data show that the HSP promoters isolated are useful for high heat-induced expression in N. tabacum BY-2 cells.
Recombinant proteins secreted from plant suspension cells into the medium are susceptible to degradation by host proteases secreted during growth. Some degradation phenomena are inhibited in the presence of various protease inhibitors, such as EDTA or AEBSF/PMSF, suggesting the presence of different classes of proteases in the medium. Here, we report the results of a proteomic analysis of the extracellular medium of a Nicotiana tabacum bright yellow 2 culture. Several serine proteases belonging to a Solanaceae-specific subtilase subfamily were identified and the genes for four cloned. Their expression at the RNA level during culture growth varied depending on the gene. An in-gel protease assay (zymography) demonstrated serine protease activity in the extracellular medium from cultures. This was confirmed by testing the degradation of an antibody added to the culture medium. This particular subtilase subfamily, therefore, represents an interesting target for gene silencing to improve recombinant protein production. Key message The extracellular medium of Nicotiana tabacum suspension cells contains serine proteases that degrade antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.