International audienceIn Alloy 718, a sharp transition exists in the fracture path changing from an intergranular brittle mode to a transgranular ductile mode which is associated with a transition of flow behavior from smooth in the dynamic strain aging regime to a serrated one in the Portevin-Le Chatelier (PLC) regime. In order to better understand both deformation and rupture behavior, PLC phenomenon in a precipitation-hardened nickel-base superalloy was carefully investigated in a wide range of temperatures [573 K to 973 K (300°C to 700°C)] and strain rates (109^-5 to 3.2910^-2 s^-1 ). Distinction was made between two PLC domains characterized by different evolutions of the critical strain to the onset of the first serration namely normal and inverse behavior. The apparent activation energies associated with both domains were determined using different methods. Results showed that normal and inverse behavior domains are related to dynamic interaction of dislocations with, respectively, interstitial and substitutional solutes atoms. This analysis confirms that normal PLC regime may be associated to the diffusion of carbon atoms, whereas the substitutional species involves in the inverse regime is discussed with an emphasis on the role of Nb and Mo
In many Ni-based superalloys, dynamic strain aging (DSA) generates an inhomogeneous plastic deformation resulting in jerky flow known as the Portevin-Le Chatelier (PLC) effect. This phenomenon has a deleterious effect on the mechanical properties and, at high temperature, is related to the diffusion of substitutional solute atoms toward the core of dislocations. However, the question about the nature of the atomic species responsible for the PLC effect at high temperature still remains open. The goal of the present work is to answer this important question; to this purpose, three different 718-type and a 625 superalloy were studied through a nonconventional approach by mechanical spectroscopy. The internal friction (IF) spectra of all the studied alloys show a relaxation peak P 718 (at 885 K for 0.1 Hz) in the same temperature range, 700 K to 950 K, as the observed PLC effect. The activation parameters of this relaxation peak have been measured, E a (P 718) = 2.68 ± 0.05 eV, s 0 = 2AE10 À15 ± 1 s as well as its broadening factor b = 1.1. Experiments on different alloys and the dependence of the relaxation strength on the amount of Mo attribute this relaxation to the stress-induced reorientation of Mo-Mo dipoles due to the short distance diffusion of one Mo atom by exchange with a vacancy. Then, it is concluded that Mo is the atomic species responsible for the high-temperature PLC effect in 718 superalloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.