SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) [Website] is a proposed all-sky spectroscopic survey satellite designed to address all three science goals in NASA's Astrophysics Division: probe the origin and destiny of our Universe; explore whether planets around other stars could harbor life; and explore the origin and evolution of galaxies. SPHEREx will scan a series of Linear Variable Filters systematically across the entire sky. The SPHEREx data set will contain R=40 spectra fir 0.75< λ <4.1µm and R=150 spectra for 4.1< λ <4.8µm for every 6.2 arcsecond pixel over the entire-sky. In this paper, we detail the extra-galactic and cosmological studies SPHEREx will enable and present detailed systematic effect evaluations. We also outline the Ice and Galaxy Evolution Investigations. I. SPHEREX MISSION OVERVIEWSPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer; PI: J. Bock) is a proposed all-sky survey satellite designed to address all three science goals in NASA's Astrophysics Division: probe the origin and destiny of our Universe; explore whether planets around other stars could harbor life; and explore the origin and evolution of galaxies. All of these exciting science themes are addressed by a single survey, with a single instrument, providing the first near-infrared spectroscopy of the complete sky. In this paper, we will focus on the cosmological science enabled by SPHEREx and outline the Galactic Ices and the Epoch of Reionization (EOR) scientific investigations.SPHEREx will probe the origin of the Universe by constraining the physics of inflation, the superluminal expansion of the Universe that took place some 10 −32 s after the Big Bang. SPHEREx will study its imprints in the threedimensional large-scale distribution of matter by measuring galaxy redshifts over a large cosmological volume at low redshifts, complementing high-redshift surveys optimized to constrain dark energy.SPHEREx will investigate the origin of water and biogenic molecules in all phases of planetary system formation -from molecular clouds to young stellar systems with protoplanetary disks -by measuring absorption spectra to determine the abundance and composition of ices toward > 2 × 10 4 Galactic targets. Interstellar ices are the likely source for water and organic molecules, the chemical basis of life on Earth, and knowledge of their abundance is key to understanding the formation of young planetary systems as well as the prospects for life on other planets.SPHEREx will chart the origin and history of galaxy formation through a deep survey mapping large-scale structure. This technique measures the total light produced by all galaxy populations, complementing studies based on deep galaxy counts, to trace the history of galactic light production from the present day to the first galaxies that ended the cosmic dark ages.SPHEREx will be the first all-sky near-infrared spectral survey, creating a legacy archive of spectra (0.75 ≤ λ ≤...
In this paper, we review the impact of small sample statistics on detection thresholds and corresponding confidence levels (CLs) in high contrast imaging at small angles. When looking close to the star, the number of resolution elements decreases rapidly towards small angles. This reduction of the number of degrees of freedom dramatically affects CLs and false alarm probabilities. Naively using the same ideal hypothesis and methods as for larger separations, which are well understood and commonly assume Gaussian noise, can yield up to one order of magnitude error in contrast estimations at fixed CL. The statistical penalty exponentially increases towards very small inner working angles. Even at 5-10 resolution elements from the star, false alarm probabilities can be significantly higher than expected. Here we present a rigorous statistical analysis which ensures robustness of the CL, but also imposes a substantial limitation on corresponding achievable detection limits (thus contrast) at small angles. This unavoidable fundamental statistical effect has a significant impact on current coronagraphic and future high contrast imagers. Finally, the paper concludes with practical recommendations to account for small number statistics when computing the sensitivity to companions at small angles and when exploiting the results of direct imaging planet surveys.
Abstract.We report the observations in the K band of the red supergiant star α Orionis and of the bright giant star α Herculis with the FLUOR beamcombiner at the IOTA interferometer. The high quality of the data allows us to estimate limb-darkening and derive precise diameters in the K band which combined with bolometric fluxes yield effective temperatures. In the case of Betelgeuse, data collected at high spatial frequency although sparse are compatible with circular symmetry and there is no clear evidence for departure from circular symmetry. We have combined the K band data with interferometric measurements in the L band and at 11.15 µm. The full set of data can be explained if a 2055 K layer with optical depths τ K = 0.060 ± 0.003, τ L = 0.026 ± 0.002 and τ 11.15 µm = 2.33 ± 0.23 is added 0.33 R above the photosphere providing a first consistent view of the star in this range of wavelengths. This layer provides a consistent explanation for at least three otherwise puzzling observations: the wavelength variation of apparent diameter, the dramatic difference in limb darkening between the two supergiant stars, and the previously noted reduced effective temperature of supergiants with respect to giants of the same spectral type. Each of these may be simply understood as an artifact due to not accounting for the presence of the upper layer in the data analysis. This consistent picture can be considered strong support for the presence of a sphere of warm water vapor, proposed by Tsuji (2000) when interpreting the spectra of strong molecular lines.
Abstract.We have observed Mira stars with the FLUOR beamcombiner on the IOTA interferometer in narrow bands around 2.2 µm wavelength. We find systematically larger diameters in bands contaminated by water vapor and CO. The visibility measurements can be interpreted with a model comprising a photosphere surrounded by a thin spherical molecular layer. The high quality of the fits we obtain demonstrates that this simple model accounts for most of the star's spatial structure. For each star and each period we were able to derive the radius and temperature of the star and of the molecular layer as well as the optical depth of the layer in absorption and continuum bands. The typical radius of the molecular layer is 2.2 R with a temperature ranging between 1500 and 2100 K. The photospheric temperatures we find are in agreement with spectral types of Mira stars. Our photospheric diameters are found smaller than in previous studies by several tens of percent. We believe previous diameters were biased by the use of unsuited geometrical models to explain visibilities. The conclusions of this work are various. First, we offer a consistent view of Mira stars over a wide range of wavelengths. Second, the parameters of the molecular layer we find are consistent with spectroscopic studies. Third, from our diameter measurements we deduce that all Mira stars are fundamental mode pulsators and that previous studies leading to the conclusion of the first-overtone mode were biased by too large diameter estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.