Indium tin oxide (ITO) is the current standard state‐of‐the‐art transparent conductive oxide (TCO), given its remarkable optical and electrical properties. However, the scarcity of indium carries an important drawback for the long‐term application due to its intensive use in many optoelectronic devices such as displays, solar cells, and interactive systems. Zinc oxide‐based TCOs can be a cost‐effective and viable alternative, but the limitations imposed by their transmittance versus resistivity tradeoff still keep them behind ITO. In this work, an in‐depth study of the structural and compositional material changes induced by specific postannealing treatments is presented, based on aluminum zinc oxide (AZO) and hydrogenated AZO (AZO:H) thin films grown by rf‐magnetron sputtering at room temperature that allows an extensive understanding of the films' electrical/structural changes and the ability to tune their physical parameters to yield increasingly better performances, which put them in line with the best ITO quality standards. The present investigation comprises results of thermal annealing at atmospheric pressure, vacuum, forming gas, H2 and Ar atmospheres and plasmas. Overall the study being performed leads to a decrease in resistivity above 40%, reaching ρ ≈ 3 × 10−4 Ω cm, with an average optical transmittance in the visible region around 88%. Such results are equivalent to the properties of state‐of‐the‐art ITO.
212941365 ** The first two authors contributed equally to this work.The post-deposition modification of ZnO-based transparent conductive oxides (TCOs) can be the key to produce thin films with optoelectronic properties similar to indium tin oxide (ITO), but at a much lower cost. Here, we present electrooptical results achieved for post-deposition annealing of Al-Zn-O (AZO), AZO:H, Ga-Zn-O:H (GZO:H), and Zn-O:H (ZNO:H) thin films deposited by RF sputtering at room temperature. These studies comprise results of thermal annealing at atmospheric pressure, vacuum, forming gas, H 2 and Ar atmospheres, and H 2 and Ar plasmas, which lead to significant enhancement of their electro-optical properties, which are correlated to morphological and structural improvements. The post-deposition annealing leads to an enhancement in resistivity above 40% for AZO, AZO:H, and GZO:H, reaching r % 2.6-3.5 Â 10 À4 Vcm, while ZnO:H showed a lower improvement of 13%. The averaged optical transmittance in the visible region is about 89% for the investigated TCOs. Such results match the properties of state-of-art ITO (r % 10 À4 Vcm and transmittance in VIS range of 90%) employing much more earth-abundant materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.