Abstract:Mixture of Gaussians is a widely used approach for background modeling to detect moving objects from static cameras. Numerous improvements of the original method developed by Stauffer and Grimson [1] have been proposed over the recent years and the purpose of this paper is to provide a survey and an original classification of these improvements. We also discuss relevant issues to reduce the computation time. Firstly, the original MOG are reminded and discussed following the challenges met in video sequences. Then, we categorize the different improvements found in the literature. We have classified them in term of strategies used to improve the original MOG and we have discussed them in term of the critical situations they claim to handle. After analyzing the strategies and identifying their limitations, we conclude with several promising directions for future research.
Abstract:Mixture of Gaussians is a widely used approach for background modeling to detect moving objects from static cameras. Numerous improvements of the original method developed by Stauffer and Grimson [1] have been proposed over the recent years and the purpose of this paper is to provide a survey and an original classification of these improvements. We also discuss relevant issues to reduce the computation time. Firstly, the original MOG are reminded and discussed following the challenges met in video sequences. Then, we categorize the different improvements found in the literature. We have classified them in term of strategies used to improve the original MOG and we have discussed them in term of the critical situations they claim to handle. After analyzing the strategies and identifying their limitations, we conclude with several promising directions for future research.
Abstract. Background modeling is a key step of background subtraction methods used in the context of static camera. The goal is to obtain a clean background and then detect moving objects by comparing it with the current frame. Mixture of Gaussians Model [1] is the most popular technique and presents some limitations when dynamic changes occur in the scene like camera jitter, illumination changes and movement in the background. Furthermore, the MGM is initialized using a training sequence which may be noisy and/or insufficient to model correctly the background. All these critical situations generate false classification in the foreground detection mask due to the related uncertainty. To take into account this uncertainty, we propose to use a Type-2 Fuzzy Mixture of Gaussians Model. Results show the relevance of the proposed approach in presence of camera jitter, waving trees and water rippling.
Abstract-Detection of moving objects is the first step in many applications using video sequences like video-surveillance, optical motion capture and multimedia application. The process mainly used is the background subtraction which one key step is the foreground detection. The goal is to classify pixels of the current image as foreground or background. Some critical situations as shadows, illumination variations can occur in the scene and generate a false classification of image pixels. To deal with the uncertainty in the classification issue, we propose to use the Choquet integral as aggregation operator. Experiments on different data sets in video surveillance have shown a robustness of the proposed method against some critical situations when fusing color and texture features. Different color spaces have been tested to improve the insensitivity of the detection to the illumination changes. Then, the algorithm has been compared with another fuzzy approach based on the Sugeno integral and has proved its robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.