International audienceThe transition to turbulence in a rotating boundary layer is analysed via direct numerical simulation (DNS) in an annular cavity made of two parallel corotating discs of finite radial extent, with a forced inflow at the hub and free outflow at the rim. In a former numerical investigation (Viaud, Serre & Chomaz J. Fluid Mech., vol. 598, 2008, pp. 451-464) realized in a sectorial cavity of azimuthal extent 2p68, we have established the existence of a primary bifurcation to nonlinear global mode with angular phase velocity and radial envelope coherent with the so-called elephant mode theory. The former study has demonstrated the subcritical nature of this primary bifurcation with a base flow that keeps being linearly stable for all Reynolds numbers studied. The present work investigates the stability of this elephant mode by extending the cavity both in the radial and azimuthal direction. When the Reynolds number based on the forced throughflow is increased above a threshold value for the existence of the nonlinear global mode, a large-amplitude impulsive perturbation gives rise to a self-sustained saturated wave with characteristics identical to the 68-fold global elephant mode obtained in the smaller cavity. This saturated wave is itself globally unstable and a second front appears in the lee of the primary where small-scale instability develops. These secondary instabilities are identical for the 2p/68 and the 2p/4 long sectorial cavities, indicating that transition involves a Floquet mode of zero azimuthal wavenumber. This secondary instability leads to a very disorganized state, defining the transition to turbulence. The observed transition to turbulence linked to the secondary instability of a global mode confirms, for the first time on a real flow, the possibility of a direct transition to turbulence through an elephant mode cascade, a scenario that was up to now only observed on the Ginzburg-Landau model. © 2011 Cambridge University Press
Spectral direct numerical simulations (DNS) are carried out for a source-sink flow in an annular cavity between two co-rotating disks. When the Reynolds number based on the forced inflow is increased, a self-sustained crossflow instability of finite amplitude is observed. We show that this nonlinear global mode is made up of a front located at the upstream boundary of the absolutely unstable domain, followed by a saturated spiral mode, and that its properties are in good agreement with results of the local stability theory. This structure is characteristic of the so-called elephant mode of Pier & Huerre (J. Fluid Mech. vol. 435, 2001, p. 145). The global bifurcation is subcritical since only large-amplitude initial perturbations are found to trigger the elephant mode. Small-amplitude perturbations induce a long-lasting transient growth but lead eventually to a damped linear global mode, showing that non-parallel effects counteract the absolute instability and restabilize the flow. A similar linear global stabilization due to non-parallel effects has been found in the case of the flow above a single rotating disk. For the single-disk geometry, the existence of an elephant mode would imply, together with results of Davies & Carpenter (2003) a subcritical global instability, which has not yet been demonstrated. Although the present geometry differs from the single-disk case, the existence of a subcritical global bifurcation is now established, allowing a precise analysis of the transition scenarios.
Cetacean propulsion by a periodic flapping motion of their fluke is considered and studied on a benchmark flexible straight wing. The aim of the study was to validate low-order models for this configuration. First, the two-dimensional rigid case is investigated, comparing the aerodynamic performance of the airfoil periodic motion vs the reduced frequency, with published data and unsteady Reynolds-averaged numerical simulation results. It appears that viscous drag modeling must be added to the discrete vortex method, in order to obtain sensible thrust results, for Garrick frequencies below 2. All high- and low-order models agree at the remarkable Garrick frequency of 1.82, although the experiment shows a lower efficiency of about 25%. The positions of the shed vortices match comparing the unsteady Reynolds-averaged numerical simulation and the discrete vortex method. Then, the three-dimensional leading-edge-suction-parameter modulated discrete vortex method is extended, by means of a lifting line theory. A modification of the method is proposed in order to consider wing dihedral, resulting from the spanwise flexibility. The configuration considers a reduced frequency of 1.82. Three types of spanwise wing flexibility are examined. For the inflexible and flexible cases, a reasonable agreement is observed between the different methods for each coefficient. The intermediate flexible wing provides a better thrust coefficient, while excessive flexibility proves to be detrimental. Vorticity fields are compared with previously published data for the three wings. For the highly flexible wing and the right choice of deformation parameters, the discrete vortex method produces reliable results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.