The field is located in a large gas producing basin in China and has prominent characteristics such as thin formation thickness, low permeability and poor reservoir connectivity. Horizontal drilling associated with multistage hydraulic fracturing has proven to be an effective technique to produce the hydrocarbon in this field. As the gas wells matures, the production rate starts to decline due to the decreasing of the bottom hole pressure which will prompt a liquid loading issue. A trending gas production loss is up to 150 mmscf in a year due to liquid loading issue alone, which is equivalent to $1.8MM revenue loss. An analytical decline rate showed that the field is declining 3.4% to 4.6% monthly due to the descending of the casing pressure, superimposed with low backflow ratio after hydraulic fracturing, which create a technical and economic challenge to produce effectively. In addition, the location between well pads are remote and far apart. This creates HSE challenge for personnel to go to the well pads, especially during icy road in the winter. Solid soap stick had been tried as a deliquifications method, unfortunately the result is unsustainable without frequent injection. It is also very much relying on human intervention. Due to that, an alternative liquid lift loading system is introduced in the field. An intelligent plunger lift has been piloted in 12 wells in the field to reduce the liquid loading issue in mid 2021. Apart from the apparent advantages of plunger lift such as mitigation of liquid fallback, zero input energy and low operating/maintenance cost, this system is not desirable to fully close well at downstroke process which comes up with increment of gas production comparing to traditional plunger lift system. One of the major advantages is the real time production data surveillance to enable remote operations based on its intelligence flow control system and downhole sensor.
Gas field C is an unconventional tight gas reservoir located in the central of China which has prominent characteristics, including thin formation, low permeability and poor reservoir connectivity which significantly impact on the field development. Horizontal wells multistage hydraulic fracturing has been proven to be an effective technique to recover the hydrocarbons from this gas field. However, with continuous production overtime, reservoir pressure declines which results in a decrease in gas production rate below the critical gas velocity, leading to accumulation of liquid in the wellbore (liquid loading), which further results in back pressure and damage to the formation. Currently, gas field C loses up to 1500 mmscf/year in gas production and associated revenue due to liquid loading. Some other factors which hinders effective deliquification of the gas wells include remote well pad locations, poor road conditions during harsh weather conditions, friction with local communities, limited manpower to daily effectively analyze over 200 wells for liquid loading diagnostics and operational risks during well intervention. To tackle these challenges, a new versatile intelligent dosing technology has been piloted to reduce liquid loading. This remote-control dosing unit is located at the well pad and is equipped with automatic valves that can dispense two different chemicals (soap and methanol) in one unit. A key new feature of this system is the ability to receive and implement instructions that optimizes the dosing rate and frequency. This remote-control functionality eliminates on-site operator intervention and HSE risks especially in winter when the well pads could be inaccessible with poor road conditions.
Despite the downturn in oil and gas industry, the recruitment of young engineers continues to ensure the succession of workforce pipeline. The need of building their competency is critical and hence a systematic training program is required with the emphasis of agility to adapt to any business condition leveraging with the latest technology. One of the most important skillsets to any graduating engineers and scientists entering the oil & gas industry is to understand fluid flow from the reservoir up to the sales point, starting from a basic well productivity driven by reservoir characterization to surface facilities equipment functionality and specifications. Digital technology has been one of the main enablers of the link to efficiently develop an oil/gas field. An interactive training program is built to combine the theory and practical in a modular format. The program is designed to deliver a practical graduate engineer within 30 to 36 months of hire. The program consists of combination of on the job (OJT), web-based training (WBT), classroom and hands on practical training. One of the main modules is designed to mimic an oil field condition using state of the art digital technology to simulate both subsurface and surface condition. This module is designed to enable engineers to learn actual data, associated with field problems that lead to decision making process in the field. The overall training experience allows the use of a real facility equipment with minimum HSE risk. The simultaneous reservoir/production model proved that is powerful exposure to build quick basic to intermediate production, reservoir and operation competencies in a controlled training environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.