The demand for performing data analysis is steadily rising. As a consequence, people of different profiles (i.e., nonexperienced users) have started to analyze their data. However, this is challenging for them. A key step that poses difficulties and determines the success of the analysis is data mining (model/algorithm selection problem). Meta-learning is a technique used for assisting non-expert users in this step. The effectiveness of meta-learning is, however, largely dependent on the description/characterization of datasets (i.e., meta-features used for meta-learning). There is a need for improving the effectiveness of meta-learning by identifying and designing more predictive meta-features. In this work, we use a method from exploratory factor analysis to study the predictive power of different meta-features collected in OpenML, which is a collaborative machine learning platform that is designed to store and organize meta-data about datasets, data mining algorithms, models and their evaluations. We first use the method to extract latent features, which are abstract concepts that group together meta-features with common characteristics. Then, we study and visualize the relationship of the latent features with three different performance measures of four classification algorithms on hundreds of datasets available in OpenML, and we select the latent features with the highest predictive power. Finally, we use the selected latent features to perform meta-learning and we show that our method improves the meta-learning process. Furthermore, we design an easy to use application for retrieving different meta-data from OpenML as the biggest source of data in this domain.
A data mining algorithm may perform differently on datasets with different characteristics, e.g., it might perform better on a dataset with continuous attributes rather than with categorical attributes, or the other way around. Typically, a dataset needs to be pre-processed before being mined. Taking into account all the possible pre-processing operators, there exists a staggeringly large number of alternatives. As a consequence, non-experienced users become overwhelmed with pre-processing alternatives. In this paper, we show that the problem can be addressed by automating the pre-processing with the support of meta-learning. To this end, we analyzed a wide range of data pre-processing techniques and a set of classification algorithms. For each classification algorithm that we consider and a given dataset, we are able to automatically suggest the transformations that improve the quality of the results of the algorithm on the dataset. Our approach will help non-expert users to more effectively identify the transformations appropriate to their applications, and hence to achieve improved results.Postprint (author's final draft
Data pre-processing is one of the most time consuming and relevant steps in a data analysis process (e.g., classification task). A given data pre-processing operator (e.g., transformation) can have positive, negative or zero impact on the final result of the analysis. Expert users have the required knowledge to find the right pre-processing operators. However, when it comes to nonexperts, they are overwhelmed by the amount of pre-processing operators and it is challenging for them to find operators that would positively impact their analysis (e.g., increase the predictive accuracy of a classifier). Existing solutions either assume that users have expert knowledge, or they recommend pre-processing operators that are only "syntactically" applicable to a dataset, without taking into account their impact on the final analysis. In this work, we aim at providing assistance to non-expert users by recommending data pre-processing operators that are ranked according to their impact on the final analysis. We developed a tool PRESISTANT, that uses Random Forests to learn the impact of pre-processing operators on the performance (e.g., predictive accuracy) of 5 different classification algorithms, such as J48, Naive Bayes, PART, Logistic Regression, and Nearest Neighbor. Extensive evaluations on the recommendations provided by our tool, show that PRESISTANT can effectively help non-experts in order to achieve improved results in their analytical tasks.the generalization performance of a classification algorithm [2], where performance is measured in terms of the ratio of correctly classified instances (i.e., predictive accuracy).The main tools used for data analysis (e.g., scikit-learn, R, Weka) overlook data pre-processing when it comes to assisting non-expert users in improving the overall performance of their analysis. These tools are usually meant for professional users who know exactly which pre-processing operators to apply. However, the staggeringly large number of available pre-processing operators (transformations) overwhelm non-expert users, and they require support.Hence, our work focuses on assisting the users by reducing the number of pre-processing options to a bunch of potentially relevant ones. The goal is to retain only the transformations that have high positive impact on the analysis. Like this we aim at reducing the time consumed in data pre-processing and at the same time improving the final results of the analysis. The focus is on classification problems, thus, our method recommends pre-processing operators that improve the performance of a given classification algorithm (e.g., increase the predictive accuracy). Contributions. The main contributions of this paper are as follows:• We apply meta-learning techniques to develop a system that is capable of recommending pre-processing operators (transformations) that positively impact the final result of some classification tasks. Our method is based on training an algorithm to learn the impact of preprocessing operators and then use it to predict and ultimate...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.