The AC susceptibility (χ + iχ ) of YBCO with and without intergrain coupling was measured in AC fields within 0.13 and 3.72 mT and frequencies from 20 Hz to 12.8 kHz. Intergrain coupling was eliminated by dispersing the powder in insulating varnish. For the coupled and uncoupled grains, the χ (T ) transition near T C is field independent, indicating that the fields used do not drive the sample into the mixed state. Thus, the χ and χ curves cannot be associated with vortex motion. In χ (T ), a peak near T C due to the intragrain response increases with applied AC field for both coupled and uncoupled grains. For the sample with sufficient grain coupling, a peak below T C shifts to low temperatures with increase in field. We attribute χ (T ) to eddy currents and explain its behaviour by taking into account the effect of the temperature dependence of the penetration depth and the electrical resistance on the eddy currents.
In realizing zinc oxide (ZnO) scintillator applications, we assess the optical damage and investigate the recovery of hydrogen-ion (H-ion) and deuterium-ion (D-ion) plasma-irradiated bulk ZnO single crystals. Hydrothermal-grown bulk crystals are irradiated with H-ion and D-ion beams with 1 keV energy and ∼1020 m−2 s−1 flux. After irradiation, the single crystals exhibit decreased visible transparencies, redshifted ultraviolet (UV) emission peaks, shortened UV emission lifetimes, and suppressed visible emission bands. These changes in the optical transmittances and photoluminescence emissions are attributed to the generation of defects during irradiation and to the interaction of hydrogen with other defects and/or impurities. Although modified by ion irradiation, the optical properties of the ZnO crystals, except for the UV emission lifetimes, recover hours after without any sample treatment and only at room temperature. Compared with the H-ion-irradiated sample, the D-ion-irradiated crystal has a slower recovery which may be related to the ions' masses, energy losses, and absolute diffusivities. Our results nevertheless show that bulk ZnO single crystals exhibit resistance to and recovery from H-ion and D-ion irradiation and can therefore be used as scintillator materials for radiation detectors inside future fusion reactors.
We investigate the optical transmittances of ion-irradiated sapphire crystals as potential vacuum ultraviolet (VUV) to near-infrared (NIR) window materials of fusion reactors. Under potential conditions in fusion reactors, sapphire crystals are irradiated with hydrogen (H), deuterium (D), and helium (He) ions with 1-keV energy and ∼ 1020-m-2 s-1 flux. Ion irradiation decreases the transmittances from 140 to 260 nm but hardly affects the transmittances from 300 to 1500 nm. H-ion and D-ion irradiation causes optical absorptions near 210 and 260 nm associated with an F-center and an F+-center, respectively. These F-type centers are classified as Schottky defects that can be removed through annealing above 1000 K. In contrast, He-ion irradiation does not cause optical absorptions above 200 nm because He-ions cannot be incorporated in the crystal lattice due to the large ionic radius of He-ions. Moreover, the significant decrease in transmittance of the ion-irradiated sapphire crystals from 140 to 180 nm is related to the light scattering on the crystal surface. Similar to diamond polishing, ion irradiation modifies the crystal surface thereby affecting the optical properties especially at shorter wavelengths. Although the transmittances in the VUV wavelengths decrease after ion irradiation, the transmittances can be improved through annealing above 1000 K. With an optical transmittance in the VUV region that can recover through simple annealing and with a high transparency from the ultraviolet (UV) to the NIR region, sapphire crystals can therefore be used as good optical windows inside modern fusion power reactors in terms of light particle loadings of hydrogen isotopes and helium.
Graphene–semiconductor junction interface states influence the carrier recombination processes in emerging optoelectronic devices. The large density of interface states in the graphene–GaAs junction is partly formed by oxidation in air of the GaAs surface. A graphene transfer presented herein reduces the arsenic species in the GaAs oxide and maintains the reduction over a span of at least one year. The photoluminescence and terahertz emission spectra show reduced surface trapping of photogenerated carriers in GaAs with graphene-capped oxide. These findings demonstrate a 2D material transfer that passivates a 3D semiconductor surface. A consequence of the passivation is observed by photoreflectance modulation spectroscopy of graphene covered semi-insulating GaAs. The built-in surface field is sufficiently screened by optically pumped carriers to reveal an enhanced excitonic absorption just below the GaAs bandgap. The absorption critical point anomalously red shifts by 4–6 meV from the bulk exciton characteristic energy, an effect we attribute to the exciton absorption occurring closer to the graphene–GaAs interface and influenced by the near-surface GaAs dielectric polarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.