Smaller and larger breasted women demonstrate differences in anthropometry, with body mass and BMI demonstrating strong relationships to breast mass. Measures of BMI and suprasternal notch to nipple distance enable predictions of breast mass and suggest that weight-related parameters are not appropriate exclusion criteria for mammaplasty.
This study investigates the effect of sports bras on thermal regulation of the breast following exercise. Sports bras negatively affected the cooling ability of the skin on the breast, with the material properties of the bra affecting thermal comfort following exercise. These results present important considerations for sports bra manufacturers.
Bare-breasted kinematics significantly increased with cup size during running. Differences in breast displacement, velocity, and acceleration between cup sizes could be predicted using estimates of breast mass based on conventional brassiere sizing. These data inform the design and evaluation of effective bra support.
Breast displacement has been investigated in various activities to inform bra design, with the goal of minimising movement; however, breast motion during swimming has yet to be considered. The aim was to investigate trunk and breast kinematics whilst wearing varying levels of breast support during two swimming strokes. Six larger-breasted females swam front crawl and breaststroke (in a swimming flume), in three breast support conditions while three video cameras recorded the motion of the trunk and right breast. Trunk and relative breast kinematics were calculated. Greater breast displacement occurred mediolaterally in the swimsuit condition (7.8, s = 1.5 cm) during front crawl and superioinferiorly in the bare-breasted condition (3.7, s = 1.6 cm) during breaststroke, with the sports bra significantly reducing breast displacements. During front crawl, the greatest trunk roll occurred in the sports bra condition (43.1, s = 8.3°) and during breaststroke greater trunk extension occurred in the swimsuit condition (55.4, s = 5.0°); however, no differences were found in trunk kinematics between the three breast support conditions. Results suggest that the swimsuit was ineffective as a means of additional support for larger-breasted women during swimming; incorporating design features of sports bras into swimsuits may improve the breast support provided.
The buoyant forces of water during aquatic exercise may provide a form of ‘natural’ breast support and help to minimise breast motion and alleviate exercise induced breast pain. Six larger-breasted females performed standing vertical land and water-based jumps, whilst wearing three breast support conditions. Underwater video cameras recorded the motion of the trunk and right breast. Trunk and relative breast kinematics were calculated as well as exercised induced breast pain scores. Key results showed that the swimsuit and sports bra were able to significantly reduce the superioinferior breast range of motion by 0.04 and 0.05 m, respectively, and peak velocity by 0.23 and 0.33 m/s, respectively, during land-based jumping when compared to the bare-breasted condition, but were ineffective at reducing breast kinematics during water-based jumping. Furthermore, the magnitude of the swimsuit superioinferior breast range of motion during water-based jumping was significantly greater than land-based jumping (0.13 m and 0.06 m), yet there were no significant differences in exercise induced breast pain, thus contradicting previously published relationships between these parameters on land. Furthermore, the addition of an external breast support garment was able to reduce breast kinematics on land but not in water, suggesting the swimsuit and sports bras were ineffective and improvements in swimwear breast support garments may help to reduce excessive breast motion during aqua aerobic jumping exercises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.