Traditionally known as a toxic gas, hydrogen sulfide (H2S) is now recognized as an important biological molecule involved in numerous physiological functions. Like nitric oxide (•NO) and carbon monoxide (CO), H2S is produced endogenously in tissues and cells and can modulate biological processes by acting on target proteins. For example, interaction of H2S with the oxygenated form of human hemoglobin and myoglobin produces a sulfheme protein complex that has been implicated in H2S degradation. The presence of this sulfheme derivative has also been used as a marker for endogenous H2S synthesis and metabolism. Remarkably, human catalases and peroxidases also generate this sulfheme product. In this review, we describe the structural and functional aspects of the sulfheme derivative in these proteins and postulate a generalized mechanism for sulfheme protein formation. We also evaluate the possible physiological function of this complex and highlight the issues that remain to be assessed to determine the role of sulheme proteins in H2S metabolism, detection and physiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.