Most interactive theorem provers provide support for some form of user-customizable proof automation. In a number of popular systems , such as Coq and Isabelle, this automation is achieved primarily through tactics, which are programmed in a separate language from that of the prover's base logic. While tactics are clearly useful in practice, they can be difficult to maintain and compose because, unlike lemmas, their behavior cannot be specified within the expressive type system of the prover itself. We propose a novel approach to proof automation in Coq that allows the user to specify the behavior of custom automated routines in terms of Coq's own type system. Our approach involves a sophisticated application of Coq's canonical structures, which generalize Haskell type classes and facilitate a flexible style of dependently-typed logic programming. Specifically, just as Haskell type classes are used to infer the canonical implementation of an overloaded term at a given type, canonical structures can be used to infer the canonical proof of an overloaded lemma for a given instantiation of its parameters. We present a series of design patterns for canonical structure programming that enable one to carefully and predictably coax Coq's type inference engine into triggering the execution of user-supplied algorithms during unification, and we illustrate these patterns through several realistic examples drawn from Hoare Type Theory. We assume no prior knowledge of Coq and describe the relevant aspects of Coq type inference from first principles.
Effective support for custom proof automation is essential for large-scale interactive proof development. However, existing languages for automation via tactics either (a) provide no way to specify the behavior of tactics within the base logic of the accompanying theorem prover, or (b) rely on advanced type-theoretic machinery that is not easily integrated into established theorem provers.We present Mtac, a lightweight but powerful extension to Coq that supports dependently typed tactic programming. Mtac tactics have access to all the features of ordinary Coq programming, as well as a new set of typed tactical primitives. We avoid the need to touch the trusted kernel typechecker of Coq by encapsulating uses of these new tactical primitives in a monad, and instrumenting Coq so that it executes monadic tactics during type inference.
Most interactive theorem provers provide support for some form of user-customizable proof automation. In a number of popular systems, such as Coq and Isabelle, this automation is achieved primarily through tactics, which are programmed in a separate language from that of the prover's base logic. While tactics are clearly useful in practice, they can be difficult to maintain and compose because, unlike lemmas, their behavior cannot be specified within the expressive type system of the prover itself.We propose a novel approach to proof automation in Coq that allows the user to specify the behavior of custom automated routines in terms of Coq's own type system. Our approach involves a sophisticated application of Coq's canonical structures, which generalize Haskell type classes and facilitate a flexible style of dependently-typed logic programming. Specifically, just as Haskell type classes are used to infer the canonical implementation of an overloaded term at a given type, canonical structures can be used to infer the canonical proof of an overloaded lemma for a given instantiation of its parameters. We present a series of design patterns for canonical structure programming that enable one to carefully and predictably coax Coq's type inference engine into triggering the execution of user-supplied algorithms during unification, and we illustrate these patterns through several realistic examples drawn from Hoare Type Theory. We assume no prior knowledge of Coq and describe the relevant aspects of Coq type inference from first principles.
Abstract. Proof-by-reflection is a well-established technique that employs decision procedures to reduce the size of proof-terms. Currently, decision procedures can be written either in Type Theory-in a purely functional way that also ensures termination-or in an effectful programming language, where they are used as oracles for the certified checker. The first option offers strong correctness guarantees, while the second one permits more efficient implementations. We propose a novel technique for proof-by-reflection that marries, in Type Theory, an effectful language with (partial) proofs of correctness. The key to our approach is to use simulable monads, where a monad is simulable if, for all terminating reduction sequences in its equivalent effectful computational model, there exists a witness from which the same reduction may be simulated a posteriori by the monad. We encode several examples using simulable monads and demonstrate the advantages of the technique over previous approaches.
Coq supports a range of built-in tactics, which are engineered primarily to support backward reasoning. Starting from a desired goal, the Coq programmer can use these tactics to manipulate the proof state interactively, applying axioms or lemmas to break the goal into subgoals until all subgoals have been solved. Additionally, it provides support for tactic programming via OCaml and Ltac, so that users can roll their own custom proof automation routines. Unfortunately, though, these tactic languages share a significant weakness. They do not offer the tactic programmer any static guarantees about the soundness of their custom tactics, making large tactic developments difficult to maintain. To address this limitation, Ziliani et al. previously proposed Mtac, a new typed approach to custom proof automation in Coq which provides the static guarantees that OCaml and Ltac are missing. However, despite its name, Mtac is really more of a metaprogramming language than it is a full-blown tactic language: it misses an essential feature of tactic programming, namely the ability to directly manipulate Coq's proof state and perform backward reasoning on it. In this paper, we present Mtac2, a next-generation version of Mtac that combines its support for typed metaprogramming with additional support for the programming of backward-reasoning tactics in the style of Ltac. In so doing, Mtac2 introduces a novel feature in tactic programming languagesÐwhat we call typed backward reasoning. With this feature, Mtac2 is capable of statically ruling out several classes of errors that would otherwise remain undetected at tactic definition time. We demonstrate the utility of Mtac2's typed tactics by porting several tactics from a large Coq development, the Iris Proof Mode, from Ltac to Mtac2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.